Thm 1
Let $(X, \mathscr{T}_{1})$, $(Y, \mathscr{T}_{2})$ be topological space. Then
$\mathscr{B} = \left\{ U \times V \; | \; U \in \mathscr{T}_{1}, \; V \in \mathscr{T}_{2} \right\}$ is a base for a topology on $X \times Y$
( $X \times Y = \left\{(x, y) \; | \; x \in X, \; y \in Y \right\}$ )
Show 1 : The union of the members of $\mathscr{B}$ is $X \times Y$
Since $X \in \mathscr{T}_{1}$ and $Y \in \mathscr{T}_{2}$,
$X \times Y \subseteq \displaystyle \bigcup_{U \in \mathscr{T}_{1}, \; V \in \mathscr{T}_{2}} U \times V \subseteq X \times Y$
end
Show 2 : For any $B_{1}, B_{2}$ in $\mathscr{B}$ and $x \in B_{1} \cap B_{2}$, $\exists B_{x} \in \mathscr{B}$ s.t. $x \in B_{x} \subseteq B_{1} \cap B_{2}$
$\forall B_{1}, B_{2} \in \mathscr{B}$
So there exists $U_{1}, U_{2} \in \mathscr{T}_{1}$ and $V_{1}, V_{2} \in \mathscr{T}_{2}$ s.t.
$B_{1} = U_{1} \times V_{1}$, $B_{2} = U_{2} \times V_{2}$
$\forall x \in B_{1} \cap B_{2}$
Let $B_{x} = B_{1} \cap B_{2}$
Therefore
$B_{1} \cap B_{2} = (U_{1} \times V_{1}) \cap (U_{2} \cap V_{2}) = (U_{1} \cap U_{2}) \times (V_{1} \times V_{2}) \in \mathscr{B}$
end
Def 1
Let $(X, \mathscr{T}_{1})$, $(Y, \mathscr{T}_{2})$ be topological space.
Let $\mathscr{T}$ be the topology generated by $\mathscr{B} = \left\{ U \times V \; | \; U \in \mathscr{T}_{1}, \; V \in \mathscr{T}_{2} \right\}$
$\mathscr{T}$ : product topology
$(X \times Y, \mathscr{T})$ : product space
Def 2
Let $(X, \mathscr{T}_{1})$, $(Y, \mathscr{T}_{2})$ be topological space and $f: X \to Y$.
$f$ is called open map if
$U \in \mathscr{T}_{1}$ $\Rightarrow$ $f(U) \in \mathscr{T}_{2}$
$f$ is called closed map if
$X \setminus U \in \mathscr{T}_{1}$ $\Rightarrow$ $Y \setminus f(X \setminus U) \in \mathscr{T}_{2}$
Prop 1
Let $X$, $Y$ be topological space and $X \times Y$ be product space.
Let projective map $P_{1} : X \times Y \to X$ and $P_{2} : X \times Y \to Y$ by
$P_{1}(x, y) = x$, $P_{2}(x, y) = y$
Then
$P_{1}$ and $P_{2}$ are continuous and open map
Show 1 : $P_{1}, P_{2}$ is continuous
Let $U$ be an open set in $X$
By definition of $P_{1}$,
$P_{1}^{-1}(U) = U \times Y$
$\therefore$ $P_{1}^{-1}(U)$ is open set in $X \times Y$
$\therefore$ $P_{1}$ is continuous
Similarly we can show $P_{2}$ is continuous
end
Show 2 : $P_{1}, P_{2}$ is open map
Let $W$ be an open set in $X \times Y$
So there exists $U_{\alpha}, V_{\alpha}$ for $\alpha \in I$ s.t.
$U_{\alpha}$, $V_{\alpha}$ are open set in $X$, $Y$, respectively
& $W = \displaystyle \bigcup_{\alpha \in I} U_{\alpha} \times V_{\alpha}$
By definition of $P_{1}$,
$P_{1}(W) = P_{1}(\displaystyle \bigcup_{\alpha \in I} U_{\alpha} \times V_{\alpha})$
$= \displaystyle \bigcup_{\alpha \in I} P(U_{\alpha} \times V_{\alpha})$
$= \displaystyle \bigcup_{\alpha \in I} U_{\alpha}$
$\therefore$ $P_{1}(W)$ is open set in $X$
$\therefore$ $P_{1}$ is open map
Similarly we can show $P_{2}$ is open map.
end
Thm 2
Let $X$, $Y$ be topological space and $(X \times Y, \mathscr{T})$ be product space. Then
Let projective map $P_{1} : (X \times Y, \mathscr{T}_{2}) \to X$ and $P_{2} : (X \times Y, \mathscr{T}_{2}) \to Y$ by
$P_{1}(x, y) = x$, $P_{2}(x, y) = y$
Then
$P_{1}$ and $P_{2}$ are continuous $\Rightarrow$ $\mathscr{T} \subseteq \mathscr{T}_{2}$
# The product topology is the smallest topology that projective maps continuous
Let $\mathscr{B}$ be base for $\mathscr{T}$
Then it is sufficient to show
$\mathscr{B} \subseteq \mathscr{T}_{2}$
$\forall B \in \mathscr{B}$
So there exists $U$, $V$ s.t.
$U$, $V$ are open set in $X$, $Y$, respectively
& $B = U \times V$
By definition of $P_{1}$ and $P_{2}$,
$P_{1}^{-1}(U) = U \times Y$, $P_{2}^{-1}(V) = X \times V$
Therefore
$P_{1}^{-1}(U) \cap P_{2}^{-1}(V) = (U \times Y) \cap (X \times V) = (U \cap X) \times (Y \cap V) = U \times V$
Since $P_{1}$ and $P_{2}$ are continuous,
$P_{1}^{-1}(U), \; P_{2}^{-1}(V) \in \mathscr{T}_{2}$
$\therefore$ $B = U \times V \in \mathscr{T}_{2}$
$\therefore$ $\mathscr{B} \subseteq \mathscr{T}_{2}$
Thm 3
Let $X$, $Y$, $Z$ be topological space and $X \times Y$ be product space.
Let projective map $P_{1} : X \times Y \to X$ and $P_{2} : X \times Y \to Y$ by
$P_{1}(x, y) = x$, $P_{2}(x, y) = y$
T.F.A.E.
$(1)$ $f : Z \to X \times Y$ is continuous
$(2)$ $P_{1} \circ f : Z \to X$ and $P_{2} \circ f : Z \to X$ are continuous
pf)
$(1) \Rightarrow (2)$
$(2) \Leftarrow (1)$
Let $\mathscr{B}$ be base for product topology on $X \times Y$
$\forall B \in \mathscr{B}$
So there exists $U$, $V$ s.t.
$U$, $V$ are open set in $X$, $Y$, respectively
& $B = U \times V$
By definition of $P_{1}$ and $P_{2}$,
$P_{1}^{-1}(U) = U \times Y$, $P_{2}^{-1}(V) = X \times V$
Therefore
$P_{1}^{-1}(U) \cap P_{2}^{-1}(V) = (U \times Y) \cap (X \times V) = (U \cap X) \times (Y \cap V) = U \times V$
Since $U \times V = P_{1}^{-1}(U) \cap P_{2}^{-1}(V)$,
$f^{-1}(B) = f^{-1}(U \times V)$
$= f^{-1}(P_{1}^{-1}(U) \cap P_{2}^{-1}(V))$
$= f^{-1}(P_{1}^{-1}(U)) \cap f^{-1}(P_{2}^{-1}(V))$
$= (P_{1} \circ f)^{-1}(U) \cap (P_{2} \circ f)^{-1}(V)$
By assumption,
$(P_{1} \circ f)^{-1}(U)$ and $(P_{2} \circ f)^{-1}(V)$ are open set in $Z$
$\therefore$ $f^{-1}(B)$ is open set in $Z$
By Thm 2 - 2,
$f$ is continuous
Def 3
Let $X$ be a set. We define
$\Delta (X) = \left\{(x, x) \; | \; x \in X \right\}$
Lemma 1
Let $X$ be a set and $x, y \in X$. Then
$x \neq y$ $\Leftrightarrow$ $(x, y) \in (X \times X) \setminus \Delta (X)$
pf)
$\Rightarrow)$
Since $x, y \in X$,
$(x, y) \in X \times X$
Since $x \neq y$,
$(x, y) \notin \Delta (X)$
$\therefore$ $(x, y) \in (X \times X) \setminus \Delta (X)$
$\Leftarrow)$
Since $(x, y) \in (X \times X) \setminus \Delta (X)$,
$(x, y) \in X \times X$ and $(x, y) \notin \Delta (X)$
$\therefore$ $x \neq y$
Lemma 2
Let $X$, $U$, $V$ be sets and $U, V \subseteq X$. Then
$U \cap V = \varnothing$ $\Leftrightarrow$ $U \times V \subseteq (X \times X) \setminus \Delta (X)$
pf)
$\Rightarrow)$
$\forall (x, y) \in U \times V$
Since $U, V \subseteq X$,
$x, y \in X$
Since $U \cap V = \varnothing$
$x \neq y$
By Lemma 1,
$(x, y) \in X \times X \setminus \Delta (X)$
$\Leftarrow)$
Suppose : $U \cap V \neq \varnothing$
So there exists $a$ s.t.
$a \in U \cap V$
$\therefore$ $(a, a) \in U \times V$ and
By assumption,
$(a \times a) \in (X \times X) \setminus \Delta (X)$
$\therefore$ $(a, a) \notin \Delta(X)$
$\therefore$ $a \neq a$
Contradiction
Thm 4
Let $X$ be a topological space.
T.F.A.E.
$(1)$ $X$ is Hausdorff
$(2)$ $\Delta(X)$ is closed set in $X \times X$
pf)
$(1) \Rightarrow (2)$
$\forall (x, y) \in (X \times X) \setminus \Delta (X)$
By Lemma 1,
$x \neq y$
Since $X$ is Hausdorff, there exists open set $U$, $V$ in $X$ s.t.
$x \in U$, $y \in V$, $U \cap V = \varnothing$
By Lemma 2,
$U \times V \subseteq (X \times X) \setminus \Delta (X) $
$\therefore$ $(x, y) \in U \times V \subseteq (X \times X) \setminus \Delta (X)$
Since $U \times V$ is open set in $X \times X$, by Prop 2
$(X \times X) \setminus \Delta (X)$ is open in $X \times X$
$\therefore$ $\Delta(X)$ is closed set in $X \times X$
$(2) \Leftarrow (1)$
$\forall x, y \; (x \neq y) \in X$
By Lemma 1,
$(x, y) \in (X \times X) \setminus \Delta(X)$
Since $X \times X \setminus \Delta(X)$ is open set, there exists open set $U$, $V$ in $X$ s.t.
$(x, y) \in U \times V \subseteq (X \times X) \setminus \Delta (X)$
$\therefore$ $x \in U$, $y \in V$
By Lemma 2,
$U \cap V = \varnothing$
$\therefore$ $X$ is Hausdorff
Thm 5
Let $(X, d)$ be a metric space. Then
$d : X \times X \to \mathbb{R}$ is continuous
( Consider $X \times X$ as product space and $\mathbb{R}$ as usual space )
Let $\mathscr{T}$, $\mathscr{T}'$ be topology in $X \times X$, $\mathbb{R}$, respectively.
$\forall (x_{0}, y_{0}) \in X \times X$
$\forall V \in \mathscr{T}'$ containing $d(x_{0}, y_{0})$
By Thm 2, there exists $r >0$ s.t.
$B_{r}^{E}(d(x_{0}, y_{0})) \subseteq V$
( $B^{E}$ is open ball by Euclidean metric )
Let $W = B_{\frac{r}{2}}(x_{0}) \times B_{\frac{r}{2}}(y_{0})$
( $B$ is open ball by $d$ )
$\therefore$ $(x_{0}, y_{0}) \in W$ and $W \in \mathscr{T}$
Claim : $d(W) \subseteq B_{r}^{E}(d(x_{0}, y_{0}))$
$\forall w \in d(W)$
So there exists $x, y \in W$ s.t.
$w = d(x, y)$
$\therefore$ $d(x_{0}, x) < \dfrac{r}{2}$ and $d(y_{0}, y) < \dfrac{r}{2}$
Since $d$ is metric,
$d(x, y) \leq d(x, x_{0}) + d(x_{0}, y_{0}) + d(y_{0}, y) < r + d(x_{0}, y_{0})$
$d(x_{0}, y_{0}) \leq d(x_{0}, x) + d(x, y) + d(y, y_{0}) < r + d(x, y)$
$\therefore$ $\left|d(x, y) - d(x_{0}, y_{0}) \right| < r$
$\therefore$ $w = d(x, y) \in B_{r}^{E}(d(x_{0}, y_{0}))$
end
$\therefore$ $(x_{0}, y_{0}) \in d(W) \subseteq V$
$\therefore$ $d$ is continuous at $(x_{0}, y_{0})$
By Thm 3,
$d$ is continuous
'일반위상 > 연속사상' 카테고리의 다른 글
Pasting Lemma (1) | 2024.09.15 |
---|---|
Subspace (0) | 2024.09.15 |
Homeomorphic (0) | 2024.09.13 |
Continuous (0) | 2024.04.17 |