Def 1
Let $(X, \mathscr{T})$ be a topological space and $A \subseteq X$
We define subspace topology $\mathscr{T}'$ for $A$ as follow.
$\mathscr{T}' = \left\{U \cap A \; | \; U \in \mathscr{T} \right\}$
$(A, \mathscr{T}')$ : subspace of $X$
Thm 1
Let $(X, \mathscr{T})$ be a topological space and $A \subseteq X$
Let $\mathscr{T}'$ be a subspace topology for $A$. Then
$(A, \mathscr{T}')$ is topological space
Show 1 : $\varnothing, A \in \mathscr{T}'$
$\varnothing = \varnothing \cap A \in \mathscr{T}'$
$A = X \cap A \in \mathscr{T}'$
end
Show 2 : $V_{\alpha} \in \mathscr{T}'$ for $\alpha \in I$ $\Rightarrow$ $\bigcup_{\alpha \in I} V_{\alpha} \in \mathscr{T}'$
So there exists $U_{\alpha} \in \mathscr{T}$ for $\alpha \in I$ s.t.
$V_{\alpha} = U_{\alpha} \cap A$
Therefore
$\displaystyle \bigcup_{\alpha \in I} V_{\alpha} = \bigcup_{\alpha \in I} (U_{\alpha} \cap A) = (\bigcup_{\alpha \in I} U_{\alpha}) \cap A \in \mathscr{T}$
end
Show 3 : $V_{1}, \cdots, V_{n} \in \mathscr{T}'$ $\Rightarrow$ $\displaystyle \bigcap_{i=1}^{n} V_{i} \in \mathscr{T}'$
So there exists $U_{i} \in \mathscr{T}$ for $i=1, \cdots, n$ s.t.
$V_{i} = U_{i} \cap A$
Therefore
$\displaystyle \bigcap_{i=1}^{n} V_{i} = \bigcap_{i=1}^{n} (U_{i} \cap A) = (\bigcap_{i=1}^{n} U_{i}) \cap A \in \mathscr{T}$
end
Thm 2
Let $(X, \mathscr{T})$ be a topological space and $(Y, \mathscr{T}')$ be subspace of $X$. Then
1. $\mathscr{B}$ : base on $X$ $\Rightarrow$ $\mathscr{B}' = \left\{B \cap Y \; | \; B \in \mathscr{B} \right\}$ : base on $Y$
2. $V$ : open in $Y$ and $Y$ : open in $X$ $\Rightarrow$ $V$ : open in $X$
3. $A \subseteq Y$, $A$ : closed in $Y$ $\Leftrightarrow$ $\exists C$ : closed in $X$ s.t. $A = C \cap Y$
pf)
Show 1 : $\mathscr{B}' \subseteq \mathscr{T}'$
Since $\mathscr{B} \subseteq \mathscr{T}$,
$\mathscr{B}' = \left\{B \cap Y \; | \; B \in \mathscr{B} \right\} \subseteq \left\{U \cap Y \; | \; U \in \mathscr{T} \right\} = \mathscr{T}'$
end
Show 2 : Every open set of $Y$ is a union of sets in $\mathscr{B}'$
$\forall V \in \mathscr{T}'$
So there exists $U \in \mathscr{T}$ s.t.
$V = U \cap Y$
Since $\mathscr{B}$ is base of $X$, there exists $B_{\alpha} \in \mathscr{B}$ for $\alpha \in I$ s.t.
$U = \displaystyle \bigcup_{\alpha \in I} B_{\alpha}$
Let $B'_{\alpha} = B_{\alpha} \cap Y \in \mathscr{B}'$.
Therefore
$\displaystyle \bigcup_{\alpha \in I} B'_{\alpha} = \bigcup_{\alpha \in I} (B_{\alpha} \cap Y) = (\bigcup_{\alpha \in I} B_{\alpha}) \cap Y = U \cap Y = V$
end
Since $V \in \mathscr{T}'$, there exists $U \in \mathscr{T}$ s.t.
$V = U \cap Y$
Since $U \in \mathscr{T}$ and $Y \in \mathscr{T}$,
$V \in \mathscr{T}$
$\Rightarrow)$
Since $Y - A \in \mathscr{T}'$, there exists $U \in \mathscr{T}$ s.t.
$Y - A = U \cap Y$
Let $C = X - U$.
So $C$ is closed in $X$.
Also
$C \cap Y = (X - U) \cap Y = (X \cap Y) - (U \cap Y) = Y - U \cap Y = A$
$\Leftarrow)$
Since $A = C \cap Y$,
$A \subseteq Y$
Also
$Y - A = Y - C \cap Y = (X \cap Y) - (C \cap Y) = (X - C) \cap Y$
Since $X - C$ is open set in $X$,
$Y - A$ is open set in $Y$
$\therefore$ $A$ is closed set in $Y$
Prop 1
Let $(X, \mathscr{T})$ be a topological space and $(A, \mathscr{T}')$ be subspace of $X$.
Suppose $B \subseteq A$. Then
$B$ is subspace of $A$ $\Leftrightarrow$ $B$ is subspace of $X$
It is sufficient to show
$\left\{U' \cap B \; | \; U' \in \mathscr{T}' \right\} = \left\{U \cap B \; | \; U \in \mathscr{T} \right\}$
Show 1 : $\left\{U' \cap B \; | \; U' \in \mathscr{T}' \right\} \subseteq \left\{U \cap B \; | \; U \in \mathscr{T} \right\}$
$\forall U' \cap B \in \left\{U' \cap B \; | \; U' \in \mathscr{T}' \right\}$
Since $U' \in \mathscr{T}'$, there exists $U \in \mathscr{T}$ s.t.
$U' = U \cap A$
Since $B \subseteq A$,
$U' \cap B = U \cap A \cap B = U \cap B$
$\therefore$ $U' \cap B \in \left\{U \cap B \; | \; U \in \mathscr{T}' \right\}$
$\therefore$ $\left\{U' \cap B \; | \; U' \in \mathscr{T}' \right\} \subseteq \left\{U \cap B \; | \; U \in \mathscr{T} \right\}$
end
Show 2 : $\left\{U \cap B \; | \; U \in \mathscr{T} \right\} \subseteq \left\{U' \cap B \; | \; U' \in \mathscr{T}' \right\}$
$\forall U \cap B \in \mathscr{T}''$
Since $B \subseteq A$,
$U \cap B = U \cap (A \cap B) = (U \cap A) \cap B$
Since $U \cap A \in \mathscr{T}'$
$U \cap B \in \left\{U' \cap B \; | \; U' \in \mathscr{T}' \right\}$
$\therefore$ $\left\{U \cap B \; | \; U \in \mathscr{T} \right\} \subseteq \left\{U' \cap B \; | \; U' \in \mathscr{T}' \right\}$
end
Def 2
Let $A \subseteq B$
Inclusion map $i : A \to B$ is a map which is defined by
$i(x) = x$
Prop 2
Let $X$ be a topological space and $Y$ be subspace of $X$. Then
inclusion map $i: Y \to X$ is continuous
Let $U$ be open set in $X$
Therefore
$i^{-1}(U) = U \cap Y$ is open in $Y$
Thm 3
Let $(X, \mathscr{T})$ be a topological space and $(Y, \mathscr{T}')$ be subspace of $X$. Then
inclusion map $i : (Y, \mathscr{T}_{2}) \to (X, \mathscr{T})$ is continuous $\Rightarrow$ $\mathscr{T}' \subseteq \mathscr{T}_{2}$
# The subspace topology is the smallest topology that makes inclusion map continuous.
$\forall V \in \mathscr{T}'$
So there exists $U \in \mathscr{T}$ s.t.
$V = U \cap Y$
Since $i$ is continuous,
$i^{-1}(U) = U \cap Y = V \in \mathscr{T}_{2}$
$\therefore$ $\mathscr{T}' \subseteq \mathscr{T}_{2}$
'일반위상 > 연속사상' 카테고리의 다른 글
Product Space (0) | 2024.09.15 |
---|---|
Pasting Lemma (1) | 2024.09.15 |
Homeomorphic (0) | 2024.09.13 |
Continuous (0) | 2024.04.17 |