Def 1
Topological spaces $X$ and $Y$ are homeomorphic if
there exists 1-1 onto function $f : X \to Y$ s.t.
$f$ and $f^{-1}$ are continuous
We write $X \cong Y$
$f$ : homeomorphsim
Thm 1
Homeomorphic is equivalence relation
Show 1 : $X \cong X$
Define $f : X \to X$ by
$f(x) = x$
It is clear that $f$ is 1-1 onto.
Let $V$ be open set in $X$.
Since $f^{-1}(V) = V$,
$f^{-1}(V)$ is open set in $X$
$\therefore$ $f$ is continuous
Since $f^{-1} = f$,
$f^{-1}$ is continuous
$\therefore$ $X \cong X$
end
Show 2 : $X \cong Y$ $\Rightarrow$ $Y \cong X$
Since $X \cong Y$, there exists 1-1 onto function $f : X \to Y$ s.t.
$f$ and $f^{-1}$ are continuous
Since $f$ is 1-1 onto,
$f^{-1}$ is 1-1 onto
Also
$f^{-1}$ and $(f^{-1})^{-1} = f$ are continuous
$\therefore$ $Y \cong X$
end
Show 3 : $X \cong Y$, $Y \cong Z$ $\Rightarrow$ $X \cong Z$
Since $X \cong Y$, there exists 1-1 onto function $f : X \to Y$ s.t.
$f$ and $f^{-1}$ are continuous
Since $Y \cong Z$, there exists 1-1 onto function $g : Y \to Z$ s.t.
$g$ and $g^{-1}$ are continuous
Since $f$, $g$ is 1-1 onto,
$g \circ f$ is 1-1 onto
Also by Thm 1,
$g \circ f$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ are continuous
$\therefore$ $X \cong Z$
end
Thm 2
Let $X$, $Y$ be topological space and $X \cong Y$. Then
1. $X$ is Hausdorff $\Leftrightarrow$ $Y$ is Hausdorff
2. $X$ is metrizable $\Leftrightarrow$ $Y$ is metrizable
pf)
$\Rightarrow)$
$\forall a, b \; (a \neq b) \in Y$
Since $X \cong Y$, there exists 1-1 onto $f : X \to Y$ s.t.
$f$ and $f^{-1}$ are continuous
Since $f$ is 1-1 onto,
$f^{-1}(a) \neq f^{-1}(b)$
Since $X$ is Hausdorff, there exists open set $U, V$ in X s.t.
$f^{-1}(a) \in U$, $f^{-1}(b) \in V$, $U \cap V = \varnothing$
$\therefore$ $a \in f(U)$, $b \in f(V)$
Since $f^{-1}$ is continuous,
$(f^{-1})^{-1}(U) = f(U)$, $(f^{-1})^{-1}(V) = f(V)$ are open set in $Y$
Also
$f(U) \cap f(V) = f(U \cap V) = \varnothing$
$\therefore$ $Y$ is Hausdorff
$\Leftarrow)$
You can prove it in a similar way as above.
$\Rightarrow)$
Since $X$ is metrizable, there exists metric $d : X \times X \to \mathbb{R}$
Since $X \cong Y$, there exists 1-1 onto $f : X \to Y$ s.t.
$f$ and $f^{-1}$ are continuous
Define $D : Y \times Y \to \mathbb{R}$ by
$D(a,b) = d(f^{-1}(a), f^{-1}(b))$
Show 1 : $D(a, b) \geq 0$ & $D(a, b) = 0$ $\Leftrightarrow$ $a = b$
Since $d$ is metric,
$D(a, b) = d(f^{-1}(a), f^{-1}(b)) \geq 0$
Also
$D(a, b) = 0$ $\Leftrightarrow$ $d(f^{-1}(a), f^{-1}(b)) = 0$
$\Leftrightarrow$ $f^{-1}(a) = f^{-1}(b)$
$\Leftrightarrow$ $a = b$
end
Show 2 : $D(a, b) = D(b ,a)$
Since $d$ is metric,
$D(a, b) = d(f^{-1}(a), f^{-1}(b))$
$= d(f^{-1}(b), f^{-1}(a))$
$= D(b, a)$
end
Show 3 : $D(a, b) + D(b, c) \geq D(a, c)$
Since $d$ is metric,
$D(a, b) + D(b, c) = d(f^{-1}(a), f^{-1}(b)) + d(f^{-1}(b), f^{-1}(c))$
$\geq d(f^{-1}(a), f^{-1}(c))$
$= D(a, c)$
end
$\therefore$ $D$ is metric on $Y$
$\therefore$ $Y$ is metrizable
$\Leftarrow)$
You can prove it in a similar way as above.
'일반위상 > 연속사상' 카테고리의 다른 글
Product Space (0) | 2024.09.15 |
---|---|
Pasting Lemma (1) | 2024.09.15 |
Subspace (0) | 2024.09.15 |
Continuous (0) | 2024.04.17 |