Def 1
Let $X$ be a set and $d : X \times X \to \mathbb{R}$ be a function that satisfies the following $3$ conditions.
$\forall x, y, z \in X$
$(\mathrm{i})$ $d(x, y) \geq 0$ & $d(x, y) = 0$ $\Leftrightarrow$ $x = y$
$(\mathrm{ii})$ $d(x, y) = d(y, x)$
$(\mathrm{iii})$ $d(x, z) \leq d(x, y) + d(y, z)$
$d$ : metric (or distance) on $X$.
$(X, d)$ : metric space.
Example
1. Euclidean metric : $d_{E} : \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}$ by
$d_{E}(\mathbf{x}, \mathbf{y}) = \sqrt{(x_{1} - y_{1})^{2} + \cdots + (x_{n} - y_{n})^{2}}$
2. square metric : $d_{M} : \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}$ by
$d_{M}(\mathbf{x}, \mathbf{y}) = \displaystyle \max_{1 \leq i \leq n} \left|x_{i} - y_{i} \right|$
3. taxi cap metric : $d_{S} : \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}$ by
$d_{S}(\mathbf{x}, \mathbf{y}) = \left|x_{1} - y_{1} \right| + \cdots + \left|x_{n} - y_{n} \right|$
4. discrete metric : $d : X \times X \to \mathbb{R}$ by
$d(x, y) = \begin{cases}
0 & x = y \\
1 & x \neq y
\end{cases} $
Def 2
Let $X$ be a set and $d$ be a metric on $X$.
Let $x_{0} \in X$, $r>0$. We define
$B_{r}(x_{0}) = \left\{x \in X \; | \; d(x_{0}, x) < r \right\}$ : open ball with radius $r$
$\overline{B_{r}(x_{0})} = \left\{x \in X \; | \; d(x_{0}, x) \leq r \right\} $ : closed ball with radius $r$
$S_{r}(x_{0}) = \left\{x \in X \; | \; d(x_{0}, x) = r \right\}$ : sphere ball with radius $r$
Thm 1
Let $X$ be a set and $d$ be a metric on $X$. Then
$\mathscr{B} = \left\{B_{r}(x_{0}) \; | \; x_{0} \in X, \; r>0 \right\}$
is base of some topology on $X$.
Show 1 : $\displaystyle \bigcup_{x_{0} \in X} B_{r}(x_{0}) = X$
Since $x_{0} \in B_{r}(x_{0}) \subseteq X$,
$X = \displaystyle \bigcup_{x_{0} \in X} \left\{x_{0} \right\} \subseteq \bigcup_{x_{0} \in X} B_{r}(x_{0}) \subseteq X$
end
Show 2 : $\forall x \in B_{r_{1}}(x_{1}) \cap B_{r_{2}}(x_{2})$, $\exists B_{x} \in \mathscr{B}$ s.t. $x \in B_{x} \subseteq B_{r_{1}}(x_{1}) \cap B_{r_{2}}(x_{2})$
$\forall x \in B_{r_{1}}(x_{1}) \cap B_{r_{2}}(x_{2})$
Let $r = \min \left\{r_{1} - d(x_{1}, x), r_{2} - d(x_{2}, x) \right\}$
Since $d(x_{1}, x) < r_{1}$ and $d(x_{2}, x) < r_{2}$,
$r>0$
Let $B_{x} = B_{r}(x) \in \mathscr{B}$
$\forall y \in B_{x}$ ( i.e. $d(x, y) < r$ )
Therefore
$d(x_{1}, y) \leq d(x_{1}, x) + d(x, y)$
$< d(x_{1}, x) + r$
$\leq d(x_{1}, x) + r_{1} - d(x_{1}, x)$
$= r_{1}$
$\therefore$ $y \in B_{r_{1}}(x_{1})$
Similarly we can get $y \in B_{r_{2}}(x_{2})$
$\therefore$ $y \in B_{r}(x_{1}) \cap B_{r_{2}}(x_{2})$
$\therefore$ $B_{x} \subseteq B_{r_{1}}(x_{1}) \cap B_{r_{2}}(x_{2})$
Since $x \in B_{x}$,
$x \in B_{x} \subseteq B_{r_{1}}(x_{1}) \cap B_{r_{2}}(x_{2})$
end
Def 3
Let $X$ be a set and $d$ be a metric on $X$.
$(X, d)$ is considered a topological space with the topology induced by the base
$\mathscr{B} = \left\{B_{r}(x_{0}) \; | \; x_{0} \in X, \; r>0 \right\}$
, and it is called a metric space.
Thm 2
Let $(X, \mathscr{T})$ be topological space induced by a metric $d$.
T.F.A.E.
$(1)$ $U$ is open set in $X$
$(2)$ $\forall x \in U$, $\exists r > 0$ s.t. $B_{r}(x) \subseteq U$
pf)
$(1) \Rightarrow (2)$
Let $\mathscr{B} = \left\{B_{r}(x_{0}) \; | \; x_{0} \in X, \; r>0 \right\}$
So $\mathscr{B}$ is base for $\mathscr{T}$
$\forall x \in U$
Since $U$ is open set in $X$, there exists $B_{r_{1}}(x_{1}) \in \mathscr{B}$ s.t.
$x \in B_{r_{1}}(x_{1}) \subseteq U$
# Thm 1
$\therefore$ $d(x_{1}, x) < r_{1}$
Let $r = r_{1} - d(x_{1}, x)$
Claim : $B_{r}(x) \subseteq B_{r_{1}}(x_{1})$
$\forall t \in B_{r}(x)$
So $d(x, t) < r$
Therefore
$d(x_{1}, t) \leq d(x_{1}, x) + d(x, t)$
$< (r_{1} - r)+ r$
$= r_{1}$
$\therefore$ $t \in B_{r_{1}}(x_{1})$
$\therefore$ $B_{r}(x) \subseteq B_{r_{1}}(x_{1})$
end
$\therefore$ $B_{r}(x) \subseteq U$
$(2) \Rightarrow (1)$
$\forall x \in U$, there exists $B_{r_{x}}(x)$ s.t.
$B_{r_{x}}(x) \subseteq U$
Therefore
$U = \displaystyle \bigcup_{x \in U} \left\{x \right\} \subseteq \bigcup_{x \in U} B_{r_{x}}(x) \subseteq U$
Since $B_{r}(x)$ is open set in $X$,
$U$ is open set in $X$
Def 4
A topological space $X$ is metrizable space if the topology if $X$ is generated by a metric.
Prop 1
Let $X$ be a set. Then
$(X, \text{discrete topology})$ is metrizable space by discrete metric
Define $d : X \times X \to \mathbb{R}$ by
$d(x, y) = \begin{cases}
0 & x = y \\
1 & x \neq y
\end{cases} $
Base generated by discrete metric is
$\mathscr{B} = \left\{B_{r}(x_{0}) \; | \; x_{0} \in X, \; r>0 \right\} = \left\{\left\{x_{0} \right\} \; | \; x_{0} \in X \right\}$
By Prop 1,
$\mathscr{B}$ generate discrete topology
$\therefore$ $(X, \text{discrete topology})$ is metrizable space by discrete metric
Lemma 1
Let $d_{M}$, $d_{E}$, and $d_{S}$ be
square metric, Euclidean metric, and taxi cap metric on $\mathbb{R}^{n}$, respectively. Then $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$,
$d_{M}(\mathbf{x}, \mathbf{y}) \leq d_{E}(\mathbf{x}, \mathbf{y}) \leq d_{S}(\mathbf{x}, \mathbf{y}) \leq nd_{M}(\mathbf{x}, \mathbf{y})$
Let $\mathbf{x} = (x_{1}, x_{2}, \cdots, x_{n})$, $\mathbf{y} = (y_{1}, y_{2}, \cdots, y_{n})$
$d_{M}(\mathbf{x}, \mathbf{y}) = \displaystyle \max_{1 \leq i \leq n} \left|x_{i} - y_{i} \right| \leq \sqrt{\left|x_{1} - y_{1} \right|^{2} + \cdots + \left|x_{n} - y_{n} \right|^{2}} = d_{E}(\mathbf{x}, \mathbf{y})$
$d_{E}(\mathbf{x}, \mathbf{y}) = \sqrt{\left|x_{1} - y_{1} \right|^{2} + \cdots + \left|x_{n} - y_{n} \right|^{2}} \leq \left|x_{1} - y_{1} \right| + \cdots + \left|x_{n} - y_{n} \right| = d_{S}(\mathbf{x}, \mathbf{y}) $
$d_{S}(\mathbf{x}, \mathbf{y}) = \left|x_{1} - y_{1} \right| + \cdots + \left|x_{n} - y_{n} \right| \leq \displaystyle n \max_{1 \leq i \leq n} \left|x_{i} - y_{i} \right| = n d_{M}(\mathbf{x}, \mathbf{y}) $
$\therefore$ $d_{M}(\mathbf{x}, \mathbf{y}) \leq d_{E}(\mathbf{x}, \mathbf{y}) \leq d_{S}(\mathbf{x}, \mathbf{y}) \leq nd_{M}(\mathbf{x}, \mathbf{y})$
Lemma 2
Let $d_{M}$, $d_{E}$, and $d_{S}$ be
square metric, Euclidean metric, and taxi cap metric on $\mathbb{R}^{n}$, respectively. Then $\forall r > 0$, $x \in \mathbb{R}^{n}$,
$B_{\frac{r}{n}}^{M}(x) \subseteq B_{r}^{S}(x) \subseteq B_{r}^{E}(x) \subseteq B_{r}^{M}(x)$
Show 1 : $B_{\frac{r}{n}}^{M}(x) \subseteq B_{r}^{S}(x) $
$\forall t \in B_{\frac{r}{n}}^{M}(x)$
So $d_{M}(x, t) < \dfrac{r}{n}$
By Lemma 1,
$d_{S}(x, t) \leq n d_{M}(x, t) < r$
$\therefore$ $t \in B_{r}^{S}(x)$
$\therefore$ $B_{\frac{r}{n}}^{M}(x) \subseteq B_{r}^{S}(x)$
end
Show 2 : $B_{r}^{S}(x) \subseteq B_{r}^{E}(x) $
You can prove it in a similar way as above.
end
Show 2 : $B_{r}^{E}(x) \subseteq B_{r}^{M}(x) $
You can prove it in a similar way as above.
end
Thm 3
Let $\mathscr{T}^{M}$, $\mathscr{T}^{E}$, and $\mathscr{T}^{S}$ be topologies of $\mathbb{R}^{n}$ generated by
square metric, Euclidean metric, and taxi cap metric, respectively. Then
$\mathscr{T}^{M} = \mathscr{T}^{E} = \mathscr{T}^{S}$
Show 1 : $\mathscr{T}^{M} \subseteq \mathscr{T}^{E}$
$\forall U \in \mathscr{T}^{M}$
For each $x \in U$, there exists $r_{x} > 0$ s.t.
$B_{r_{x}}^{M}(x) \subseteq U$
# Thm 2
By Lemma 2,
$B_{r_{x}}^{E}(x) \subseteq B_{r_{x}}^{M}(x)$
Therefore
$U = \displaystyle \bigcup_{x \in U} \left\{x \right\} \subseteq \bigcup_{x \in U} B_{r_{x}}^{E}(x) \subseteq U $
$\therefore$ $U \in \mathscr{T}^{E}$
$\therefore$ $\mathscr{T}^{M} \subseteq \mathscr{T}^{E} $
end
Show 2 : $\mathscr{T}^{E} \subseteq \mathscr{T}^{S}$
You can prove it in a similar way as above.
end
Show 3 : $\mathscr{T}^{S} \subseteq \mathscr{T}^{M}$
You can prove it in a similar way as above.
end
$\therefore$ $\mathscr{T}^{E} = \mathscr{T}^{M} = \mathscr{T}^{S}$
'일반위상 > 위상공간' 카테고리의 다른 글
Interior, Boundary, and Exterior (0) | 2024.09.15 |
---|---|
limit point (1) | 2024.09.15 |
Hausdorff (0) | 2024.09.15 |
Base (0) | 2024.03.11 |
Topological space (0) | 2024.03.07 |