Def 1
Let $(X, \mathscr{T})$, $(Y, \mathscr{T}')$ be topological space. We define
$f : (X, \mathscr{T}) \to (Y, \mathscr{T}')$ is continuous
$\Leftrightarrow$ For any open set $U$ in $Y$, $f^{-1}(U)$ is open set in $X$
Thm 1
Let $X$, $Y$, $Z$ be topological space. Then
$f : X \to Y$ and $g : Y \to Z$ are continuous $\Rightarrow$ $g \circ f$ is continuous
Let $U$ be open in $Z$
$(g \circ f)^{-1}(U) = f^{-1} \circ g^{-1} (U) = f^{-1}(g^{-1}(U))$
Since $g$ is continuous,
$g^{-1}(U)$ is open in $Y$
Since $f$ is continuous,
$f^{-1}(g^{-1}(U))$ is open in $X$.
$\therefore$ $g \circ f$ is continuous
Thm 2
Let $X$, $Y$ be topological space and $f : X \to Y$
T.F.A.E
$(1)$ $f$ is continuous
$(2)$ Let $\mathscr{B}$ be a base of $Y$. For any $B \in \mathscr{B}$, $f^{-1}(B)$ is open set in $X$
$(3)$ For any $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$
$(4)$ For any $C \subseteq Y$, $\overline{f^{-1}(C)} \subseteq f^{-1}(\overline{C})$
$(5)$ For any closed set $C$ of $Y$, $f^{-1}(C)$ is closed set in $X$
pf)
$(1) \Rightarrow (2)$
It is clear.
$(2) \Rightarrow (3)$
$\forall A \subseteq X$
$\forall y \in f(\overline{A})$
So there exists $x \in \overline{A}$ s.t.
$f(x) = y$
Let $U$ be an open set containing $y$.
Claim : $U \cap f(A) \neq \varnothing$
By Thm 1, there exists $B \in \mathscr{B}$ s.t.
$y \in B \subseteq U$
$\therefore$ $x \in f^{-1}(B)$
By assumption,
$f^{-1}(B)$ is open in $X$.
Since $x \in \overline{A}$,
$f^{-1}(B) \cap A \neq \varnothing$
$\therefore$ $B \cap f(A) \neq \varnothing$
Since $B \subseteq U$,
$U \cap f(A) \neq \varnothing$
end
$\therefore$ $y \in \overline{f(A)}$
$\therefore$ $f(\overline{A}) \subseteq \overline{f(A)}$
$(3) \Rightarrow (4)$
$\forall C \subseteq Y$
$\forall x \in \overline{f^{-1}(C)}$
So $f(x) \in f(\overline{f^{-1}(C)})$
By assumption,
$f(\overline{f^{-1}(C)}) \subseteq \overline{f(f^{-1}(C))} \subseteq \overline{C}$
Since $f(f^{-1}(C)) \subseteq C$, by Cor 4
$\overline{f(f^{-1} (C))} \subseteq \overline{C}$
$\therefore$ $f(x) \in \overline{C}$
$\therefore$ $x \in f^{-1}(\overline{C})$
$\therefore$ $\overline{f^{-1}(C)} \subseteq f^{-1}(\overline{C})$
$(4) \Rightarrow (5)$
Let $C$ be a closed set in $Y$.
So $\overline{C} = C$
By assumption,
$\overline{f^{-1}(C)} \subseteq f^{-1}(\overline{C}) = f^{-1}(C)$
Since $f^{-1}(C) \subseteq \overline{f^{-1}(C)}$,
$\overline{f^{-1}(C)} = f^{-1}(C)$
$\therefore$ $f^{-1}(C)$ is closed set in $X$
$(5) \Rightarrow (1)$
Let $U$ be an open set in $Y$.
So $Y \setminus U$ is closed set in $Y$
By assumption,
$f^{-1}(Y \setminus U)$ is closed set in $X$
Since $f^{-1}(Y \setminus U) = f^{-1}(Y) \setminus f^{-1}(U) = X \setminus f^{-1}(U)$,
$f^{-1}(U)$ is open set in $X$
Def 2
Let $(X, \mathscr{T})$, $(Y, \mathscr{T}')$ be topological space and $x_{0} \in X$. We define
$f : X \to Y$ is continuous at $x_{0}$
$\Leftrightarrow$ $\forall V \in \mathscr{T}'$ containing $f(x_{0})$, $\exists U \in \mathscr{T}$ containing $x_{0}$ s.t. $f(U) \subseteq V$
Thm 3
Let $(X, \mathscr{T})$, $(Y, \mathscr{T}')$ be topological space and $f : X \to Y$. Then
$f$ is continuous
$\Leftrightarrow$ $f$ is continuous for every point $x \in X$
pf)
$\Rightarrow)$
$\forall x \in X$
$\forall V \in \mathscr{T}'$ containing $f(x)$
So $x \in f^{-1}(V)$
Since $f$ is continuous,
$f^{-1}(V)$ is open set in $X$
By Prop 2, there exists $U \in \mathscr{T}$ s.t.
$x \in U \subseteq f^{-1}(V)$
$\therefore$ $f(U) \subseteq V$
$\therefore$ $f$ is continuous at $x$
$\Leftarrow)$
$\forall V \in \mathscr{T}'$
Case 1 : $f^{-1}(V) = \varnothing$
$\therefore$ $f^{-1}(V) \in \mathscr{T}$
end
Case 2 : $f^{-1}(V) \neq \varnothing$
For each $x \in f^{-1}(V)$,
since $f(x) \in V$ and $f$ is continuous at $x$, there exists $U_{x} \in \mathscr{T}$ containing $x$ s.t.
$f(U_{x}) \subseteq V$
Since $x \in U_{x} \subseteq f^{-1}(V)$,
$f^{-1}(V) = \displaystyle \bigcup_{x \in f^{-1}(V)} \left\{x \right\} \subseteq \displaystyle \bigcup_{x \in f^{-1}(V)} U_{x} \subseteq f^{-1}(V)$
$\therefore$ $f^{-1}(V) = \displaystyle \bigcup_{x \in f^{-1}(V)} U_{x} \in \mathscr{T}$
end
$\therefore$ $f$ is continuous
'일반위상 > 연속사상' 카테고리의 다른 글
Product Space (0) | 2024.09.15 |
---|---|
Pasting Lemma (1) | 2024.09.15 |
Subspace (0) | 2024.09.15 |
Homeomorphic (0) | 2024.09.13 |