Metric space
Def 1Let $X$ be a set and $d : X \times X \to \mathbb{R}$ be a function that satisfies the following $3$ conditions. $\forall x, y, z \in X$$(\mathrm{i})$ $d(x, y) \geq 0$ & $d(x, y) = 0$ $\Leftrightarrow$ $x = y$$(\mathrm{ii})$ $d(x, y) = d(y, x)$ $(\mathrm{iii})$ $d(x, z) \leq d(x, y) + d(y, z)$ $d$ : metric (or distance) on $X$.$(X, d)$ : metric space. Example1. Euclidean me..
2024. 3. 20.