Special Case
$\frac{\mathrm{d}y}{\mathrm{d}x} = f(Ax + By + C)$ $(B \neq 0)$
# If $B=0$, then $\frac{\mathrm{d}y}{\mathrm{d}x} = f(Ax + By + C)$ is separable.
Solution
$u = Ax + By + C$ $\Rightarrow$ $\frac{\mathrm{d}u}{\mathrm{d}x} = A + B\frac{\mathrm{d}y}{\mathrm{d}x}$
$\frac{\mathrm{d}y}{\mathrm{d}x} = f(Ax + By + C)$
$\Rightarrow$ $\frac{1}{B} \frac{\mathrm{d}u}{\mathrm{d}x} -\frac{A}{B}= f(u)$
$\Rightarrow$ $\frac{\mathrm{d}u}{\mathrm{d}x} = Bf(u) + A$
It is separable.
'미분방정식 > 1계 미분방정식' 카테고리의 다른 글
Bernoulli's equation (0) | 2024.02.03 |
---|---|
Exact equation and Homogeneous function (0) | 2024.02.03 |
Separable and Linear equation (0) | 2024.02.03 |
Basic definition and local existence of a unique solution (0) | 2024.02.02 |