Def 1
A differential expression $M(x, y) \mathrm{d}x + N(x, y) \mathrm{d}y$ is an exact differential in $R = \left\{ (x, y) \in \mathbb{R}^{2} \; | \; a<x<b, \; c<y<d \right\}$ if it corresponds to the differential of some function $f(x, y)$ defined in $R$. A $1$st order DE of the form
$M(x, y) \mathrm{d}x + N(x, y) \mathrm{d}y = 0$
is called exact equation if $M(x, y) \mathrm{d}x + N(x, y) \mathrm{d}y$ is an exact differentail in $R$
Thm 1 criteria of exact differential
Let $M(x, y)$ and $N(x, y)$ be continuous and have continuous first partial derivatives in $R = \left\{ (x, y) \in \mathbb{R}^{2} \; | \; a<x<b, \; c<y<d \right\}$. Then $M(x, y) \mathrm{d}x + N(x, y) \mathrm{d}y$ is an exact differential iff
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} $$
pf)
$\Rightarrow)$
For simplicity we assume that $M(x, y), N(x, y)$ have continuous first partial derivatives in $\mathbb{R}^{2}$.
Then there exists some function $f(x, y)$ s.t. $$M(x, y) \mathrm{d}x + N(x, y) \mathrm{d}y = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y$$
Therefore $$M(x, y) = \frac{\partial f}{\partial x}, \; N(x, y) = \frac{\partial f}{\partial y}$$
and $$\frac{\partial M}{\partial y} = \frac{\partial }{\partial y}(\frac{\partial f}{\partial x}) = \frac{\partial^{2} f}{\partial y \partial x} = \frac{\partial }{\partial x}(\frac{\partial f}{\partial y}) = \frac{\partial N}{\partial x}$$
$\Leftarrow)$
Let $f(x, y) = \int M(x, y) \mathrm{d}x + g(y)$.
At this time, $g'(y) = N(x, y) - \frac{\partial }{\partial y} \int M(x, y) \mathrm{d}x $.
Claim 1 : $g(y)$ depends only on $y$
It is sufficient to show $\frac{\partial }{\partial x} [g'(y)] = 0$
$\frac{\partial }{\partial x} [g'(y)] = \frac{\partial }{\partial x} [N(x, y) - \frac{\partial }{\partial y} \int M(x, y) \mathrm{d}x ]$
$= \frac{\partial N}{\partial x} - \frac{\partial }{\partial y} (\frac{\partial }{\partial x} \int M(x, y) \mathrm{d}x)$
$= \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 0$
Claim 2 : $\mathrm{d}f(x, y) = M(x, y)\mathrm{d}x + N(x, y)\mathrm{d}y$
$\mathrm{d}f(x, y) = \frac{\partial }{\partial x}[\int M(x, y) \mathrm{d}x + g(y)] \mathrm{d}x + \frac{\partial }{\partial y}[\int M(x, y) \mathrm{d}x + g(y)] \mathrm{d}y$
$= M(x, y) \mathrm{d}x + [\frac{\partial }{\partial y}\int M(x, y) \mathrm{d}x + g'(y)] \mathrm{d}y$
$= M(x, y) \mathrm{d}x + N(x,y) \mathrm{d}y $
$\therefore$ $M(x, y) \mathrm{d}x + N(x, y) \mathrm{d}y$ is an exact differential
Def 2
A function $f(x, y)$ is called homogeneous function of degree $\alpha$ if $\forall t, x, y \in \mathbb{R},$
$f(tx, ty) = t^{\alpha}f(x,y)$
Def 3
A $1$st order DE $M(x, y) \mathrm{d}x + N(x, y) \mathrm{d}y = 0$ is said to be homogeneous if both $M(x, y)$ and $N(x, y)$ are homogeneous function of the same degree $\alpha$.
Solution
Idea : $u = \frac{y}{x}$ $\Rightarrow$ $\mathrm{d}y = u \mathrm{d}x + x \mathrm{d}u$
$M(x, y) = M(x, ux) = x^{\alpha} M(1, u) $
$N(x, y) = N(x, ux) = x^{\alpha} N(1, u) $
$M(x, y) \mathrm{d}x + N(x, y) \mathrm{d}y = 0$
$\Rightarrow$ $x^{\alpha}M(1, u) \mathrm{d}x + x^{\alpha}N(1, u) \mathrm{d}y = 0$
$\Rightarrow$ $x^{\alpha}M(1, u) \mathrm{d}x + x^{\alpha}N(1, u) [u \mathrm{d}x + x \mathrm{d}u ]= 0$
$\Rightarrow$ $[M(1, u) + uN(1, u)]\mathrm{d}x + xN(1, u)\mathrm{d}u = 0$
$\Rightarrow$ $\frac{1}{x}\mathrm{d}x = -\frac{N(1, u)}{M(1, u)+uN(1, u)}\mathrm{d}u$
It is separable.
'미분방정식 > 1계 미분방정식' 카테고리의 다른 글
Reduction to separable variables (0) | 2024.02.03 |
---|---|
Bernoulli's equation (0) | 2024.02.03 |
Separable and Linear equation (0) | 2024.02.03 |
Basic definition and local existence of a unique solution (0) | 2024.02.02 |