Notation
WLOG : without loss of generality
LHS : Left hand side
RHS : Right hand side
IVP : Initial value problem
BVP : Boundary value problem
$a_{n}(x)\frac{\mathrm{d}^{n}y}{\mathrm{d} x^{n}} + a_{n-1}(x)\frac{\mathrm{d}^{n-1}y}{\mathrm{d} x^{n-1}} + \cdots + a_{1}(x)\frac{\mathrm{d}y}{\mathrm{d} x} + a_{0}(x)y = g(x)$ $(*)$
Def 1
Any function $\phi$, defined on an interval $I$ and possessing at least $n$ derivatives that are continuous on $I$, is said to be a solution of a differential equation $(*)$ on the interval $I$ if $\phi(x)$ reduces to an identity when substituted into a differential equation $(*)$.
Def 2
A relation $G(x, y) = 0$ is said to be an implicit solution of a differential equation $(*)$ on an interval $I$, provided that there exists at least one function $\phi$ that satisfies the relation as well as the differential equation $(*)$ on $I$.
Thm 1 local existence of a unique solution
Let $R$ be a rectangular region in the $xy$-plane($\mathbb{R}^{2}$) defined by $a \leq x \leq b, \; c \leq y \leq d$ that contains the point $(x_{0}, y_{0})$ in the interior. i.e.
$(x_{0}, y_{0}) \in R = \left\{(x, y) \in \mathbb{R}^{2} \; | \; a \leq x \leq b, \; c \leq x \leq d \right\}$
If $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continous on $R$, then there exists some interval $I_{0} = (x_{0} - h, x_{0} + h ), \; h>0$, contained in $[a, b]$, and a unique function $y(x)$ defined on $I_{0}$ s.t. $y(x)$ is a solution of given IVP
$\left\{\begin{matrix}
\frac{\mathrm{d}y}{\mathrm{d} x} = f(x, y) \\
y(x_{0}) = y_{0} \end{matrix}\right. $
'미분방정식 > 1계 미분방정식' 카테고리의 다른 글
Reduction to separable variables (0) | 2024.02.03 |
---|---|
Bernoulli's equation (0) | 2024.02.03 |
Exact equation and Homogeneous function (0) | 2024.02.03 |
Separable and Linear equation (0) | 2024.02.03 |