정의1
$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = f(x)y^{n}$ $(n \in \mathbb{R})$
is called Bernoulli's equation.
# If $n = 0$ or $n=1$, then $\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = f(x)y^{n}$ is a linear equation.
Solution
Idea : $u = y^{1-n}$ $\Rightarrow$ $y = u^{\frac{1}{1-n}}$ $\Rightarrow$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1-n} u^{\frac{n}{1-n}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = f(x)y^{n}$
$\Rightarrow$ $\frac{1}{1-n} u^{\frac{n}{1-n}} \frac{\mathrm{d}u}{\mathrm{d}x} + P(x)u^{\frac{1}{1-n}} = f(x) u^{\frac{n}{1-n}}$
$\Rightarrow$ $\frac{\mathrm{d}u}{\mathrm{d}x} + (1-n)P(x)u = (1-n)f(x)$
It is a linear equation.
'미분방정식 > 1계 미분방정식' 카테고리의 다른 글
Reduction to separable variables (0) | 2024.02.03 |
---|---|
Exact equation and Homogeneous function (0) | 2024.02.03 |
Separable and Linear equation (0) | 2024.02.03 |
Basic definition and local existence of a unique solution (0) | 2024.02.02 |