Def 1
A $1$st order Differential Equation of the form
$\frac{\mathrm{d}y}{\mathrm{d} x} = g(x)h(y)$
is said to be separable.
Solution
In this case, we can easily find the solution by collecting $x$ and $y$ terms, and intergrating those terms. So we get
$\frac{1}{h(y)} \mathrm{d}y = g(x) \mathrm{d}x$ $\Rightarrow$ $\int \frac{1}{h(y)} \mathrm{d}y = \int g(x) \mathrm{d}x$
Def 2
A $1$st order DE of the form
$a_{0}(x) \frac{\mathrm{d}y}{\mathrm{d} x} + a_{1}(x)y = g(x)$
is said to be linear equation in the variable $y$. This is called general form of linear Eq.
A specific form from in the following
$\frac{\mathrm{d}y}{\mathrm{d} x} + P(x)y = f(x)$
is called standard form of linear Eq.
Solution
Idea : multiply $e^{\int P(x) \mathrm{d} x} $
$e^{\int P(x) \mathrm{d} x}[\frac{\mathrm{d}y}{\mathrm{d} x} +P(x)y] = e^{\int P(x) \mathrm{d} x}f(x)$
$\Rightarrow$ $\frac{\mathrm{d}}{\mathrm{d} x}[e^{\int P(x) \mathrm{d} x} y] = e^{\int P(x) \mathrm{d} x}f(x) $
$\Rightarrow$ $e^{\int P(x) \mathrm{d} x} y = \int e^{\int P(x) \mathrm{d} x}f(x) \mathrm{d} x + C$ (for some $C \in \mathbb{R}$)
$\Rightarrow$ $y = C e^{- \int P(x) \mathrm{d} x} + e^{- \int P(x) \mathrm{d} x} \int e^{\int P(x) \mathrm{d} x}f(x) \mathrm{d} x $
'미분방정식 > 1계 미분방정식' 카테고리의 다른 글
Reduction to separable variables (0) | 2024.02.03 |
---|---|
Bernoulli's equation (0) | 2024.02.03 |
Exact equation and Homogeneous function (0) | 2024.02.03 |
Basic definition and local existence of a unique solution (0) | 2024.02.02 |