정의1
Let $a, b \in \mathbb{Z}$ and $a \neq 0$
$a$ divides $b$ if $b = ak$ for some $k \in \mathbb{Z}$, we write $a|b$
($a \!\!\! \not | b$ if $a$ doesn't divide $b$)
정의2
Let $a, b \in \mathbb{Z} \setminus \left\{\mathbf{0} \right\}$
The greatest common divisor of $a$ and $b$ is the positive integer $d$ s.t.
$\mathrm{i})$ $d|a$ and $d|b$
$\mathrm{ii})$ $d'|a$ and $d'|b$ $\Rightarrow$ $d' \leq d$
we write $d = gcd(a,b)$
정의3
We say that $a$ and $b$ are relatively prime (mutually prime / coprime) if $gcd(a, b)=1$
'정수론 > 정수론 기초' 카테고리의 다른 글
Fundamental Theorem of Arithmetic (1) | 2024.01.02 |
---|---|
Linear equation theorem (1) | 2024.01.02 |
유클리디안 알고리즘(Euclidean algorithm) (0) | 2024.01.02 |
피타고라스 세 쌍 (다른 접근) (2) | 2024.01.02 |
피타고라스 세 쌍 (0) | 2024.01.02 |