정리1
Let $a, b, q, r \in \mathbb{Z}$
If $a = bq+r$, then $gcd(a,b) = gcd(b, r)$
Let $ d= gcd(a,b)$, $d' = gcd(b,r)$
$d|a$ and $d|b$
$\Rightarrow$ $d|a-bq$
$\Rightarrow$ $d|r$
So $d|b$ and $d|r$ $\Rightarrow$ $d \leq d'$
$d'|b$ and $d'|r$
$\Rightarrow$ $d'|bq+r$
$\Rightarrow$ $d'|a$
So $d'|b$ and $d'|a$ $\Rightarrow$ $d' \leq d$
$\therefore$ $d=d'$
<Eclidean algorithm : finding $gcd(a,b)$>
Let $a, b \in \mathbb{N}$ and $a>b$
$a = bq_{1} + r_{1}$ $0 \leq r_{1} < b$
$b = r_{1}q_{2} + r_{2}$ $0 \leq r_{2} < r_{1}$
$r_{1} = r_{2}q_{3} + r_{3}$ $0 \leq r_{3} < r_{2}$
$\vdots$
$r_{n-1} = r_{n}q_{n+1} + r_{n+1}$ $0 \leq r_{n+1} < r_{n}$
$r_{n} = r_{n+1}q_{n+2} + 0$
$(b = r_{0} > r_{1} > r_{2} > \cdots > r_{n+1} > r_{n+2} = 0)$
$\Rightarrow$ $gcd(a,b) = gcd(b,r_{1}) = gcd(r_{1}, r_{2}) = \cdots = gcd(r_{n}, r_{n+1}) = r_{n+1}$
'정수론 > 정수론 기초' 카테고리의 다른 글
Fundamental Theorem of Arithmetic (1) | 2024.01.02 |
---|---|
Linear equation theorem (1) | 2024.01.02 |
피타고라스 세 쌍 (다른 접근) (2) | 2024.01.02 |
피타고라스 세 쌍 (0) | 2024.01.02 |
기본 정의 (0) | 2024.01.02 |