정의1
$a,b,c \in \mathbb{N}$, a triple $(a, b, c)$ is a Pythagorean triple if $a^{2} + b^{2} =c^{2}$
# 줄여서 $PT$라고 쓰기도 한다.
정의2
A $PT$ $a,b,c$ is a primitive Pythagorean triple ($PPT$) if $gcd(a,b,c) = 1$
How to find $PPT$?
Suppose 1 : $(a, b) =$ (even, even)
Then $c^{2}$ is even
$\Rightarrow$ $c$ is even
$\Rightarrow$ $gcd(a,b,c) \geq 2$
Contradiction
Suppose 2 : $(a, b) =$ (odd, odd)
$a = 2x+1, b=2y+1$ for some $x,y \in \mathbb{Z}_{\geq 0}$ $\Rightarrow$ $c = 2z$ for some $z \in \mathbb{Z}$
위를 $a^{2} + b^{2} =c^{2}$에 대입하면
$\Rightarrow$ $(2x+1)^{2} + (2y+1)^{2} =(2z)^{2}$
$\Rightarrow$ $4x^{2} + 4x + 4y^{2} + 4y + 2 =4z^{2}$
$\Rightarrow$ $2x^{2} + 2x + 2y^{2} + 2y + 1 =2z^{2}$
좌변은 odd이고 우변은 even이다.
Contradiction
WLOG, WMA $(a,b) =$ (odd, even) (Then c is odd)
$a^{2} + b^{2} =c^{2}$
$\Rightarrow$ $a^{2} = c^{2} - b^{2} = (c-b)(c+b)$
Claim 1 : $c-b$ and $c+b$ are squares
$gcd(c-b, c+b) = 1$ since $(c-b)(c+b)$ is a square
Cl 1 - Suppose 1 : $d|c-b$ and $d|c+b$
Then $d|(c+b) + (c-b)$ $\Rightarrow$ $d|2c$
and $d|(c+b) - (c-b)$ $\Rightarrow$ $d|2b$
$gcd(b,c) = 1$ since $gcd(a, b,c) = 1$ and $a^{2} + b^{2} =c^{2} $
$\therefore$ $d=1$ or $d=2$
$c =$ odd, $b = $ even $\Rightarrow$ $c - b =$ odd
$\Rightarrow$ $d \neq 2$
$\therefore$ $d=1$
$\Rightarrow$ $gcd(c-b, c+b) = 1$
Cl 1 - Conclusion : $a^{2} = t^{2}s^{2} \; (t^{2} = c-b, s^{2} = c+b$)
$\Rightarrow$ $ a = st, \; b = \frac{s^{2}-t^{2}}{2}, \; c = \frac{s^{2}+t^{2}}{2}$
$(s, t : odd, \; s > t \geq 1, \; gcd(s,t)=1)$
정리1
Let $a,b,c \in \mathbb{N}$ suppose $a$ is odd, $b$ is even. Then
$(a,b,c)$ is a $PPT$
$\Leftrightarrow $ $a = st, \; b = \frac{s^{2}-t^{2}}{2}, \; c = \frac{s^{2}+t^{2}}{2}$ for some $s,t \in \mathbb{N}$ s.t.
$(s, t : odd, \; s > t \geq 1, \; gcd(s,t)=1)$
pf)
$\Rightarrow)$
Done
$\Leftarrow)$
We need to show that $gcd(a, b,c) = 1$ and $a^{2} + b^{2} =c^{2} $
clearly $(st)^{2} + ( \frac{s^{2}-t^{2}}{2})^{2} = ( \frac{s^{2}+t^{2}}{2})^{2}$
show that $gcd(st, \frac{s^{2}-t^{2}}{2}, \frac{s^{2}+t^{2}}{2}) = 1$
Suppose 1 : $p|st, \frac{s^{2}-t^{2}}{2}, \frac{s^{2}+t^{2}}{2}$ ($p$ is prime)
Since $p$ is a prime and $p|st$,
so $p|s$ or $p|t$
S1 - Case 1 : $p|s$
$s=px$ for some $x \in \mathbb{N}$
Since $ p|\frac{s^{2}-t^{2}}{2}$,
so $s^{2}-t^{2} = 2py$ for some $y \in \mathbb{N}$
$\Rightarrow$ $(px)^{2} - t^{2} = 2py$
$\Rightarrow$ $(px)^{2} -2py = t^{2} $
Since $ p | (px)^{2} -2py$,
so $p|t^{2}$ $\Rightarrow$ $p|t$
Since $p|s, \; p|t$ and $gcd(s,t)=1$,
so $p=1$
$\therefore$ $gcd(st, \frac{s^{2}-t^{2}}{2}, \frac{s^{2}+t^{2}}{2}) = 1$
S1 - Case 2 : $p|t$
Simliar to S1 - Case 1
'정수론 > 정수론 기초' 카테고리의 다른 글
Fundamental Theorem of Arithmetic (1) | 2024.01.02 |
---|---|
Linear equation theorem (1) | 2024.01.02 |
유클리디안 알고리즘(Euclidean algorithm) (0) | 2024.01.02 |
피타고라스 세 쌍 (다른 접근) (2) | 2024.01.02 |
기본 정의 (0) | 2024.01.02 |