Prop 1
For $t \in \mathbb{R} \setminus \left\{0 \right\}$,
$\arctan t + \arctan \dfrac{1}{t} = \begin{cases}
\dfrac{\pi}{2} & t > 0 \\
-\dfrac{\pi}{2} & t < 0
\end{cases} $
Case 1 : $t > 0$
So there exists $0 < \theta < \dfrac{\pi}{2}$ s.t.
$\tan \theta = t$
$\therefore$ $\arctan t = \theta$
Also
$\dfrac{1}{t} = \cot \theta = \tan (\dfrac{\pi}{2} - \theta)$
Since $0 < \dfrac{\pi}{2} - \theta < \dfrac{\pi}{2}$,
$\arctan \dfrac{1}{t} = \dfrac{\pi}{2} - \theta$
$\therefore$ $\arctan t + \arctan \dfrac{1}{t} = \dfrac{\pi}{2} $
end
Case 2 : $t < 0$
So there exists $-\dfrac{\pi}{2} < \theta < 0$ s.t.
$\tan \theta = t$
$\therefore$ $\arctan t = \theta$
Also
$\dfrac{1}{t} = \cot \theta = \tan (-\dfrac{\pi}{2} - \theta)$
Since $-\dfrac{\pi}{2} < -\dfrac{\pi}{2} - \theta < 0$,
$\arctan \dfrac{1}{t} = -\dfrac{\pi}{2} - \theta$
$\therefore$ $\arctan t + \arctan \dfrac{1}{t} = -\dfrac{\pi}{2} $
end
Thm 1
Let $\Omega = \mathbb{C} \setminus \left\{z \; | \; \mathrm{Im} \; z = 0, \; \mathrm{Re} \; z \leq 0 \right\}$ . Then
$\mathrm{Log} \; z = \begin{cases}
\ln \left|z \right| + i \arctan \dfrac{y}{x} & \mathrm{Re} \; z > 0\\
\ln \left|z \right| + i (-\arctan \dfrac{x}{y} + \dfrac{\pi}{2}) & \mathrm{Im} \; z > 0 \\
\ln \left|z \right| + i (-\arctan \dfrac{x}{y} - \dfrac{\pi}{2}) & \mathrm{Im} \; z < 0
\end{cases}$ ( $z = x+ iy$ )
on $\Omega$
Case 1 : $\mathrm{Re} \; z > 0$
So $x >0$ and $- \dfrac{\pi}{2} < \mathrm{Arg} \; z < \dfrac{\pi}{2}$
By the polar representation of $z$,
$\tan (\mathrm{Arg} \; z) = \dfrac{y}{x}$
Since $- \dfrac{\pi}{2} < \mathrm{Arg} \; z < \dfrac{\pi}{2}$,
$\mathrm{Arg} \; z = \arctan \dfrac{y}{x}$
$\therefore$ $\mathrm{Log} \; z = \ln \left|z \right| + i \arctan \dfrac{y}{x}$
end
Case 2 : $\mathrm{Im} \; z > 0$
So $y > 0$ and $0 < \mathrm{Arg} \; z < \pi$
By the polar representation of $z$,
$\cot (\mathrm{Arg} \; z) = \dfrac{x}{y}$
$\therefore$ $\tan (\dfrac{\pi}{2} - \mathrm{Arg} \; z) = \dfrac{x}{y}$
Since $-\dfrac{\pi}{2} < \dfrac{\pi}{2} - \mathrm{Arg} \; z < \dfrac{\pi}{2}$,
$\dfrac{\pi}{2} - \mathrm{Arg} \; z = \arctan \dfrac{y}{x}$
$\therefore$ $\mathrm{Log} \; z = \ln \left|z \right| + i (- \arctan \dfrac{x}{y} + \dfrac{\pi}{2})$
end
Case 3 : $\mathrm{Im} \; z < 0$
So $y < 0$ and $-\pi < \mathrm{Arg} \; z < 0$
By the polar representation of $z$,
$\cot (\mathrm{Arg} \; z) = \dfrac{x}{y}$
$\therefore$ $\tan (-\dfrac{\pi}{2} - \mathrm{Arg} \; z) = \dfrac{x}{y}$
Since $-\dfrac{\pi}{2} < -\dfrac{\pi}{2} - \mathrm{Arg} \; z < \dfrac{\pi}{2}$,
$-\dfrac{\pi}{2} - \mathrm{Arg} \; z = \arctan \dfrac{y}{x}$
$\therefore$ $\mathrm{Log} \; z = \ln \left|z \right| + i (- \arctan \dfrac{x}{y} - \dfrac{\pi}{2})$
end
Thm 2
Let $\Omega = \mathbb{C} \setminus \left\{z \; | \; \mathrm{Im} \; z = 0, \; \mathrm{Re} \; z \leq 0 \right\}$ . Then
$\mathrm{Log} \; z$ is differentiable on $\Omega$
Let $\mathrm{Log} \; z = u + iv$
Since $\dfrac{\partial }{\partial x}(\ln \sqrt{x^{2} + y^{2}} ) = \dfrac{x}{x^{2} + y^{2}}$,
$\dfrac{\partial u}{\partial x} = \dfrac{x}{x^{2} + y^{2}}$
Since $\dfrac{\partial }{\partial x}(\arctan \dfrac{y}{x}) = -\dfrac{y}{x^{2} + y^{2}}$ and $\dfrac{\partial }{\partial x}(- \arctan \dfrac{x}{y}) = -\dfrac{y}{x^{2} + y^{2}}$,
$\dfrac{\partial v}{\partial x} = -\dfrac{y}{x^{2} + y^{2}}$
$\therefore$ $\dfrac{\partial u}{\partial x}$, $\dfrac{\partial v}{\partial x}$ are continuous on $\Omega$
Since $\dfrac{\partial }{\partial y}(\ln \sqrt{x^{2} + y^{2}} ) = \dfrac{y}{x^{2} + y^{2}}$,
$\dfrac{\partial u}{\partial y} = \dfrac{y}{x^{2} + y^{2}}$
Since $\dfrac{\partial }{\partial y}(\arctan \dfrac{y}{x}) = \dfrac{x}{x^{2} + y^{2}}$ and $\dfrac{\partial }{\partial y}(- \arctan \dfrac{x}{y}) = \dfrac{x}{x^{2} + y^{2}}$,
$\dfrac{\partial v}{\partial y} = \dfrac{x}{x^{2} + y^{2}}$
$\therefore$ $\dfrac{\partial u}{\partial y}$, $\dfrac{\partial v}{\partial y}$ are continuous on $\Omega$
$\therefore$ C-R equation of $\mathrm{Log} \; z$ is satisfied on $\Omega$
By Cor 1,
$\mathrm{Log} \; z$ is differentiable on $\Omega$
Cor 1
Let $\Omega = \mathbb{C} \setminus \left\{z \; | \; \mathrm{Im} \; z = 0, \; \mathrm{Re} \; z \leq 0 \right\}$ . Then
$(\mathrm{Log} \; z)' = \dfrac{1}{z}$ ( $z \in \Omega$ )
Cor 2
1. $(e^{z})' = e^{z}$
2. $(\sin z)' = \cos z$
3. $(\cos z)' = - \sin z$
# Def 2 and Thm 2
Prop 2
$\mathrm{Log}(1 + z) = \displaystyle \sum_{n=1}^{\infty} (-1)^{n-1} \dfrac{1}{n} z^{n}$ ( $\left|z \right| < 1$ )
Let $\Omega' = \mathbb{C} \setminus \left\{z \; | \; \mathrm{Im} \; z = 0, \; \mathrm{Re} \; z \leq -1 \right\}$
By Cor 1,
$(\mathrm{Log}(1+z))' = \dfrac{1}{1+z}$ ( $z \in \Omega'$ )
By geometric series,
$\dfrac{1}{1+z} = \displaystyle \sum_{n=0}^{\infty} (-1)^{n}z^{n}$ ( $\left|z \right| < 1$ )
By Thm 2,
$(\displaystyle \sum_{n=0}^{\infty} (-1)^{n} \dfrac{1}{n+1} z^{n+1})' = \displaystyle \sum_{n=0}^{\infty} (-1)^{n}z^{n}$
$\therefore$ $(\mathrm{Log}(1+z))' = (\displaystyle \sum_{n=1}^{\infty} (-1)^{n-1} \dfrac{1}{n} z^{n})'$
By Thm 1,
$\mathrm{Log}(1+z) = \displaystyle \sum_{n=1}^{\infty} (-1)^{n} \dfrac{1}{n} z^{n} + \alpha$ ( $\alpha \in \mathbb{C}$ )
Since $\mathrm{Log}(1) = 0$,
$\alpha = 0$
$\therefore$ $\mathrm{Log}(1 + z) = \displaystyle \sum_{n=1}^{\infty} (-1)^{n-1} \dfrac{1}{n} z^{n}$ ( $\left|z \right| < 1$ )
'복소수함수론 > 해석함수' 카테고리의 다른 글
멱급수의 미분 (2) | 2024.09.07 |
---|---|
character of f (0) | 2024.09.07 |
Difference of $\mathbb{C}$ and $\mathbb{R}^{2}$ (0) | 2024.09.04 |
Cauchy-Riemann equation (0) | 2024.09.03 |
복소함수 미분 (0) | 2024.05.01 |