Def 1
$u : \mathbb{R}^{2} \to \mathbb{R}$ differentaible at $(x_{0}, y_{0})$
$\Leftrightarrow$ $\exists \dfrac{\partial u}{\partial x}(x_{0}, y_{0}), \dfrac{\partial u}{\partial y}(x_{0}, y_{0})$ and $\displaystyle \frac{\left|u(x_{0} + h, y_{0} + k) - [u(x_{0}, y_{0}) + \frac{\partial u}{\partial x}(x_{0}, y_{0})h + \frac{\partial u}{\partial y}(x_{0}, y_{0})k] \right|}{\left|(h, k) \right|} \to 0$ as $\left|(h, k) \right| \to 0$
Thm 1
Let $u : \mathbb{R}^{2} \to \mathbb{R}$
The partial derivatives of $u$ exist in the neighborhood of $(x_{0}, y_{0})$ and are continuous at $(x_{0}, y_{0})$
$\Rightarrow$ $u$ is differentaible at $(x_{0}, y_{0})$
$\forall \varepsilon > 0$
Since partial derivative of $u$ exists in the neighborhood of $(x_{0}, y_{0})$, there exists $\delta_{1} > 0$ s.t.
$\left|(x, y) - (x_{0}, y_{0}) \right| < \delta_{1} $ $\Rightarrow$ $\exists \dfrac{\partial u}{\partial x}(x, y)$, $\dfrac{\partial u}{\partial y}(x, y)$
Since $\dfrac{\partial u}{\partial x}$ is continuous at $(x_{0}, y_{0})$, there exists $\delta_{2} >0$ s.t.
$\left|(x, y) - (x_{0}, y_{0}) \right| < \delta_{2} $ $\Rightarrow$ $\left|\dfrac{\partial u}{\partial x}(x, y) - \dfrac{\partial u}{\partial x}(x_{0}, y_{0}) \right| < \dfrac{\varepsilon}{\sqrt{2}}$
Since $\dfrac{\partial u}{\partial y}$ is continuous at $(x_{0}, y_{0})$, there exists $\delta_{3} >0$ s.t.
$\left|(x, y) - (x_{0}, y_{0}) \right| < \delta_{3} $ $\Rightarrow$ $\left|\dfrac{\partial u}{\partial y}(x, y) - \dfrac{\partial u}{\partial y}(x_{0}, y_{0}) \right| < \dfrac{\varepsilon}{\sqrt{2}}$
Let $\delta = \min \left\{\delta_{1}, \delta_{2}, \delta_{3} \right\} $
Suppose : $0 < \left|(h, k) \right| < \delta$
By mean value theorem,
$u(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0})$
$= u(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0} + k) + u(x_{0}, y_{0} + k) - u(x_{0}, y_{0})$
$= h \dfrac{\partial u}{\partial x} (x_{0} + h', y_{0} + k) + k \dfrac{\partial u}{\partial y} (x_{0}, y_{0} + k')$
( $h'$ lies between $x_{0}$, $x_{0} + h$ and $k'$ lies between $y_{0}$, $y_{0} + k$ )
By Cauchy-Schwarz inequality,
$\left|u(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0}) - h \dfrac{\partial u}{\partial x} (x_{0}, y_{0}) - k \dfrac{\partial u}{\partial y} (x_{0}, y_{0}) \right|$
$= \left|h (\dfrac{\partial u}{\partial x} (x_{0} + h', y_{0} + k) - \dfrac{\partial u}{\partial x} (x_{0}, y_{0})) + k (\dfrac{\partial u}{\partial y} (x_{0}, y_{0} + k') - \dfrac{\partial u}{\partial y} (x_{0}, y_{0})) \right|$
$\leq \sqrt{h^{2} + k^{2}} \sqrt{(\dfrac{\partial u}{\partial x} (x_{0} + h', y_{0} + k) - \dfrac{\partial u}{\partial x} (x_{0}, y_{0}))^{2} + (\dfrac{\partial u}{\partial y} (x_{0}, y_{0} + k') - \dfrac{\partial u}{\partial y} (x_{0}, y_{0}))^{2}}$
Therefore
$\displaystyle \frac{\left|u(x_{0} + h, y_{0} + k) - [u(x_{0}, y_{0}) + \frac{\partial u}{\partial x}(x_{0}, y_{0})h + \frac{\partial u}{\partial y}(x_{0}, y_{0})k] \right|}{\left|(h, k) \right|}$
$\leq \sqrt{(\dfrac{\partial u}{\partial x} (x_{0} + h', y_{0} + k) - \dfrac{\partial u}{\partial x} (x_{0}, y_{0}))^{2} + (\dfrac{\partial u}{\partial y} (x_{0}, y_{0} + k') - \dfrac{\partial u}{\partial y} (x_{0}, y_{0}))^{2}}$
$< \sqrt{(\dfrac{\varepsilon}{\sqrt{2}})^{2} + (\dfrac{\varepsilon}{\sqrt{2}})^{2}} = \varepsilon$
end
$\therefore$ $\displaystyle \lim_{\left|(h, k) \right| \to 0}\frac{\left|u(x_{0} + h, y_{0} + k) - [u(x_{0}, y_{0}) + \frac{\partial u}{\partial x}(x_{0}, y_{0})h + \frac{\partial u}{\partial y}(x_{0}, y_{0})k] \right|}{\left|(h, k) \right|} = 0$
$\therefore$ $u$ is differentiable at $(x_{0}, y_{0})$
Thm 2
For $f(z) = u(x, y) + iv(x, y)$,
$u, v$ are differentiable at $z_{0} = x_{0} + iy_{0}$ .
The C-R equation of $f$ is satisfied at $z_{0}$ .
$\Rightarrow$ $f$ is differentiable at $z_{0}$
Let
$$u(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0}) - h \frac{\partial u}{\partial x} (x_{0}, y_{0}) - k \frac{\partial u}{\partial y} (x_{0}, y_{0}) = e_{1}(h, k)$$
$$v(x_{0} + h, y_{0} + k) - v(x_{0}, y_{0}) - h \frac{\partial v}{\partial x} (x_{0}, y_{0}) - k \frac{\partial v}{\partial y} (x_{0}, y_{0}) = e_{2}(h, k)$$
Since $u, v$ are differentiable at $(x_{0}, y_{0})$,
$\displaystyle \lim_{\left|(h,k) \right| \to 0} \frac{\left| e_{i}(h, k) \right|}{\left|(h, k) \right|} = 0$ for $i = 1, 2$
Let $l = h+ik$
$\dfrac{f(z_{0} + l) - f(z_{0})}{l}$
$= \displaystyle \frac{1}{l} ([h \frac{\partial u}{\partial x}(x_{0}, y_{0}) + k \frac{\partial u}{\partial y}(x_{0}, y_{0}) + e_{1}] + i[h \frac{\partial v}{\partial x}(x_{0}, y_{0}) + k \frac{\partial v}{\partial y}(x_{0}, y_{0}) + e_{2}])$
$= \displaystyle \frac{1}{l}(e_{1} + i e_{2}) + \frac{1}{l} (h \frac{\partial u}{\partial x}(x_{0}, y_{0}) + i k \frac{\partial v}{\partial y}(x_{0}, y_{0})) + \frac{i}{l} (h \frac{\partial v}{\partial x}(x_{0}, y_{0}) - i k \frac{\partial u}{\partial y}(x_{0}, y_{0}))$
$= \displaystyle \frac{1}{l}(e_{1} + i e_{2}) + \frac{1}{l} (h \frac{\partial u}{\partial x}(x_{0}, y_{0}) + i k \frac{\partial u}{\partial x}(x_{0}, y_{0})) + \frac{i}{l} (h \frac{\partial v}{\partial x}(x_{0}, y_{0}) + i k \frac{\partial v}{\partial x}(x_{0}, y_{0}))$
$= \displaystyle \frac{1}{l}(e_{1} + i e_{2}) + \frac{\partial u}{\partial x}(x_{0}, y_{0}) + i \frac{\partial v}{\partial x}(x_{0}, y_{0})$
$= \displaystyle \frac{1}{l}(e_{1} + i e_{2}) + \frac{\partial f}{\partial x}(x_{0}, y_{0})$
Since $\displaystyle \lim_{\left|l \right| \to 0} \left| \frac{e_{i}}{l} \right| = 0$ for $i = 1, 2$,
$\displaystyle \lim_{l \to 0} \frac{e_{i}}{l} = 0$ for $i=1, 2$
$\therefore$ $\displaystyle \lim_{l \to 0} \frac{e_{1} + ie_{2}}{l} = 0$
$\therefore$ $\displaystyle \lim_{l \to 0} \frac{f(z_{0} + l) - f(z_{0})}{l} = \frac{\partial f}{\partial x}(z_{0})$
$\therefore$ $f(z)$ is differentiable at $z_{0}$
Cor 1
For $f(z) = u(x, y) + iv(x, y)$,
The partial derivatives of $u, v$ exist in the neighborhood of $z_{0} = x_{0} + iy_{0}$ and are continuous at $z_{0}$ .
The C-R equation of $f$ is satisfied at $z_{0}$ .
$\Rightarrow$ $f$ is differentiable at $z_{0}$
Thm 3
For $f(z) = u(x,y) + iv(x, y)$,
$f$ is differentiable at $z_{0} = x_{0} + iy_{0}$
$\Rightarrow$ $u$, $v$ are differentiable at $z_{0}$
Show 1 : The partial derivatives of $u$, $v$ exist at $z_{0}$
By Thm 1, it is clear!
end
Show 2 : $\displaystyle \lim_{\left|(h, k) \right| \to 0} \dfrac{\left| u(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0}) - \dfrac{\partial u}{\partial x}(x_{0}, y_{0})h - \dfrac{\partial u}{\partial y}(x_{0}, y_{0})k \right|}{\left|(h, k) \right|} =0$
$\forall \varepsilon > 0$
Since $f$ is differentiable at $z_{0}$, there exists $\delta >0$ s.t.
$0 < \left|l \right| < \delta$ $\Rightarrow$ $\left|\dfrac{f(z_{0} + l) - f(z_{0})}{l} - f'(z_{0}) \right| < \varepsilon$
Let $l = h + ik$ and $f'(z_{0}) = a + ib$
$\left|\dfrac{f(z_{0} + l) - f(z_{0})}{l} - f'(z_{0}) \right|$
$= \left|\dfrac{u(x_{0} + h, y_{0} + k) + iv(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0}) - iv(x_{0}, y_{0})}{h + ik} - a - ib \right| $
$= \left|\dfrac{u(x_{0} + h, y_{0} + k) + iv(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0}) - iv(x_{0}, y_{0}) - ah + bk - ibh - iak}{h + ik} \right| $
$= \dfrac{\left| [u(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0}) - ah + bk] + i[v(x_{0} + h, y_{0} + k) - v(x_{0}, y_{0}) - bh - ak] \right|}{\left|(h, k) \right|} $
Therefore
$0 < \left|l \right| < \delta$
$\Rightarrow$ $\dfrac{\left| u(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0}) - ah + bk \right|}{\left|(h, k) \right|}$
$\leq \dfrac{\left| [u(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0}) - ah + bk] + i[v(x_{0} + h, y_{0} + k) - v(x_{0}, y_{0}) - bh - ak] \right|}{\left|(h, k) \right|}$
$< \varepsilon$
$\therefore$ $\displaystyle \lim_{\left|(h, k) \right| \to 0} \dfrac{\left| u(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0}) - ah + bk \right|}{\left|(h, k) \right|} =0$
By Cor 1,
$f'(z_{0}) = \dfrac{\partial f}{\partial x}(z_{0}) = \dfrac{\partial u}{\partial x}(x_{0}, y_{0}) + i\dfrac{\partial v}{\partial x}(x_{0}, y_{0})$
$\therefore$ $a = \dfrac{\partial u}{\partial x}(x_{0}, y_{0})$, $b = \dfrac{\partial v}{\partial x}(x_{0}, y_{0})$
By Thm 2,
C-R equation of $f$ is satisfied at $z_{0}$
$\therefore$ $b = -\dfrac{\partial u}{\partial y}(x_{0}, y_{0})$
$\therefore$ $\displaystyle \lim_{\left|(h, k) \right| \to 0} \dfrac{\left| u(x_{0} + h, y_{0} + k) - u(x_{0}, y_{0}) - \dfrac{\partial u}{\partial x}(x_{0}, y_{0})h - \dfrac{\partial u}{\partial y}(x_{0}, y_{0})k \right|}{\left|(h, k) \right|} =0$
end
Show 3 : $\displaystyle \lim_{\left|(h, k) \right| \to 0} \dfrac{\left| v(x_{0} + h, y_{0} + k) - v(x_{0}, y_{0}) - \dfrac{\partial v}{\partial x}(x_{0}, y_{0})h - \dfrac{\partial v}{\partial y}(x_{0}, y_{0})k \right|}{\left|(h, k) \right|} =0$
This is similar to Show 2.
end
$\therefore$ $u$, $v$ are diffrenetiable at $z_{0}$
Cor 2
For $f(z) = u(x,y) + iv(x, y)$,
$f$ is differentiable at $z_{0} = x_{0} + iy_{0}$
$\Leftrightarrow$ $u$, $v$ are differentiable at $z_{0}$ & C-R equation of $f$ is satisfied at $z_{0}$
'복소수함수론 > 해석함수' 카테고리의 다른 글
$\mathrm{Log} \; z$ (0) | 2024.09.07 |
---|---|
멱급수의 미분 (2) | 2024.09.07 |
character of f (0) | 2024.09.07 |
Cauchy-Riemann equation (0) | 2024.09.03 |
복소함수 미분 (0) | 2024.05.01 |