Def 1
For $f(z) = u(x,y) + i v(x, y)$ and $z_{0} = x_{0} + iy_{0}$,
$$\frac{\partial f}{\partial x}(x_{0}, y_{0}) = -i \frac{\partial f}{\partial y}(x_{0}, y_{0})$$
$$( \; \Leftrightarrow \frac{\partial u}{\partial x}(x_{0}, y_{0}) = \frac{\partial v}{\partial y}(x_{0}, y_{0}), \; \frac{\partial v}{\partial x}(x_{0}, y_{0}) = - \frac{\partial u}{\partial y}(x_{0}, y_{0}) \; )$$
called Cauchy-Riemann equation.
# also called C-R equation
Thm 1
$f(z) = u(x, y) + iv(x, y)$ is differentiable at $z_{0} = x_{0} + iy_{0}$.
$\Rightarrow$ The partial derivatives of $u, v$ exist at $z_{0}$
$f'(z_{0}) = \displaystyle \lim_{z \to z_{0}} \frac{f(z) - f(z_{0})}{z - z_{0}}$
$= \displaystyle \lim_{x + iy_{0} \to z_{0}} \frac{f(x + iy_{0}) - f(z_{0})}{x + iy_{0} - z_{0}}$
$= \displaystyle \lim_{x \to x_{0}} \frac{f(x + iy_{0}) - f(x_{0} + iy_{0})}{x - x_{0}}$
$= \displaystyle \lim_{x \to x_{0}} \frac{u(x, y_{0}) - u(x_{0}, y_{0})}{x - x_{0}} + i \frac{v(x, y_{0}) - v(x_{0}, y_{0})}{x - x_{0}} $
By Prop 1,
$\displaystyle \lim_{x \to x_{0}} \frac{u(x, y_{0}) - u(x_{0}, y_{0})}{x - x_{0}} = \mathrm{Re} \; f'(z_{0})$
$\displaystyle \lim_{x \to x_{0}} \frac{v(x, y_{0}) - v(x_{0}, y_{0})}{x - x_{0}} = \mathrm{Im} \; f'(z_{0})$
Also
$f'(z_{0}) = \displaystyle \lim_{z \to z_{0}} \frac{f(z) - f(z_{0})}{z - z_{0}}$
$= \displaystyle \lim_{x_{0} + iy \to z_{0}} \frac{f(x_{0} + iy) - f(z_{0})}{x_{0} + iy - z_{0}}$
$= \displaystyle \lim_{y \to y_{0}} \frac{f(x_{0} + iy) - f(x_{0} + iy_{0})}{i(y - y_{0})}$
$= \displaystyle \lim_{y \to y_{0}} -i\frac{u(x_{0}, y) - u(x_{0}, y_{0})}{y - y_{0}} + \frac{v(x_{0}, y) - v(x_{0}, y_{0})}{y - y_{0}} $
By Prop 1,
$\displaystyle \lim_{y \to y_{0}} \frac{u(x_{0}, y) - u(x_{0}, y_{0})}{y - y_{0}} = -\mathrm{Im} \; f'(z_{0})$
$\displaystyle \lim_{y \to y_{0}} \frac{v(x_{0}, y) - v(x_{0}, y_{0})}{y - y_{0}} = \mathrm{Re} \; f'(z_{0})$
$\therefore$ The partial derivatives of $u, v$ exist at $z_{0}$
Thm 2
$f(z) = u(x,y) + i v(x, y)$ is differentiable at $z_{0} = x_{0} + iy_{0}$
$\Rightarrow$ C-R equation is satisfied at $z_{0}$
$f'(z_{0}) = \displaystyle \lim_{z \to z_{0}} \frac{f(z) - f(z_{0})}{z - z_{0}}$
$= \displaystyle \lim_{x + iy_{0} \to z_{0}} \frac{f(x + iy_{0}) - f(z_{0})}{x + iy_{0} - z_{0}}$
$= \displaystyle \lim_{x \to x_{0}} \frac{f(x + iy_{0}) - f(x_{0} + iy_{0})}{x - x_{0}}$
$= \displaystyle \lim_{x \to x_{0}} \frac{u(x, y_{0}) - u(x_{0}, y_{0})}{x - x_{0}} + i \frac{v(x, y_{0}) - v(x_{0}, y_{0})}{x - x_{0}} $
$= \displaystyle (\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x})(x_{0}, y_{0})$
$= \displaystyle \frac{\partial (u + iv)}{\partial x}(x_{0}, y_{0})$
$= \displaystyle \frac{\partial f}{\partial x}(x_{0}, y_{0}) $
Also
$f'(z_{0}) = \displaystyle \lim_{z \to z_{0}} \frac{f(z) - f(z_{0})}{z - z_{0}}$
$= \displaystyle \lim_{x_{0} + iy \to z_{0}} \frac{f(x_{0} + iy) - f(z_{0})}{x_{0} + iy - z_{0}}$
$= \displaystyle \lim_{y \to y_{0}} \frac{f(x_{0} + iy) - f(x_{0} + iy_{0})}{i(y - y_{0})}$
$= \displaystyle \lim_{y \to y_{0}} -i[\frac{u(x_{0}, y) - u(x_{0}, y_{0})}{y - y_{0}} + i \frac{v(x_{0}, y) - v(x_{0}, y_{0})}{y - y_{0}} ]$
$= \displaystyle -i(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y})(x_{0}, y_{0})$
$= \displaystyle -i\frac{\partial (u + iv)}{\partial y}(x_{0}, y_{0})$
$= \displaystyle -i\frac{\partial f}{\partial y}(x_{0}, y_{0}) $
$\therefore$ $\displaystyle \frac{\partial f}{\partial x}(x_{0}, y_{0}) = -i \frac{\partial f}{\partial y}(x_{0}, y_{0})$
Cor 1
$f(z) = u(x,y) + i v(x, y)$ is differentiable at $z_{0}$
$\Rightarrow$ $f'(z_{0}) = \dfrac{\partial f}{\partial x} (z_{0}) = - i \dfrac{\partial f}{\partial y} (z_{0})$
Thm 3
For $f(z) = u(x,y) + i v(x, y)$, C-R equation is satisfied for all $z$
$\Rightarrow$ $\Delta u = 0$ and $\Delta v = 0$
( $\Delta$ is Laplace operator )
$\Delta u = \dfrac{\partial^2 u}{\partial x^2} + \dfrac{\partial^2 u}{\partial y^2}$
$= \dfrac{\partial }{\partial x} (\dfrac{\partial u}{\partial x}) + \dfrac{\partial }{\partial y} (\dfrac{\partial u}{\partial y})$
$= \dfrac{\partial }{\partial x} (\dfrac{\partial v}{\partial y}) + \dfrac{\partial }{\partial y} (-\dfrac{\partial v}{\partial x})$
$= \dfrac{\partial^{2} v}{\partial x \partial y} - \dfrac{\partial^{2} v}{\partial y \partial x} = 0 $
Similarly $\Delta v = 0$
Cor 2
$f(z) = u(x,y) + i v(x, y)$ is differentiable at all points.
$\Rightarrow$ $\Delta u = 0$ and $\Delta v = 0$
( $\Delta$ is Laplace operator )
'복소수함수론 > 해석함수' 카테고리의 다른 글
$\mathrm{Log} \; z$ (0) | 2024.09.07 |
---|---|
멱급수의 미분 (2) | 2024.09.07 |
character of f (0) | 2024.09.07 |
Difference of $\mathbb{C}$ and $\mathbb{R}^{2}$ (0) | 2024.09.04 |
복소함수 미분 (0) | 2024.05.01 |