Def 1
$\overline{\mathbb{C}} = \mathbb{C} \cup \left\{\infty \right\}$
is 1 point compactification of $\mathbb{C}$ .
$\infty$ behave like the infinity we know. Therefore we can extend $f(z) = \dfrac{az + b}{cz + d}$ to
$f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ by
$f(-\dfrac{d}{c}) = \infty$, $f(\infty) = \dfrac{a}{c}$
Cor 1
Let $f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ by
$f(z) = \dfrac{az+b}{cz+d}$ ($ad - bc \neq 0$)
Then
$f$ is 1-1 onto
Thm 1
Let $f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ by
$f(z) = \dfrac{az+b}{cz+d}$ ($ad - bc \neq 0$)
Let $\mathscr{C}$ be collection of circles and lines in complex plane. Then $\forall A \in \mathscr{C}$,
$f(A) \in \mathscr{C}$
Special Case : $f(z) = \dfrac{1}{z}$
$\forall A \in \mathscr{C}$,
Since $A$ is circle or line, there exists $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ s.t.
$A = \left\{(x,y) \; | \; \alpha (x^{2} + y^{2}) + \beta x + \gamma y + \delta = 0 \right\} $
( $\alpha = 0$ $\Rightarrow$ line, $\alpha \neq 0$ $\Rightarrow$ circle )
$\therefore$ $f(A) = \left\{(u, v) \; | \; \alpha (x^{2} + y^{2}) + \beta x + \gamma y + \delta = 0 \right\} $
( $x = \dfrac{u}{u^{2} + v^{2}}$, $v = - \dfrac{v}{u^{2} + v^{2}}$ )
$\therefore$ $f(A) = \left\{(u, v) \; | \; \alpha + \beta u - \gamma v + \delta (u^{2} + v^{2}) = 0 \right\}$
( $\delta = 0$ $\Rightarrow$ line, $\delta \neq 0$ $\Rightarrow$ circle )
$\therefore$ $f(A) \in \mathscr{C}$
end
General Case
$f(z) = \dfrac{az+b}{cz+d}$ is composition of translatation, $\dfrac{1}{z}$, and linear function.
For all three, the image of a circle or a line remains a circle or a line.
$\therefore$ $f(A) \in \mathscr{C}$
end
Prop 1
$\overline{\mathbb{C}}$ is 1-1 onto with $S^{2}$
( $S^{2}$ is $2$-sphere )
Let $S^{2} = \left\{(x, y, h) \; | \; x^{2} + y^{2} + h^{2} = 1 \right\}$ and $z = a + ib = (a, b, 0)$
Define a line $l$ that connects points $(a, b, 0)$ and $(0, 0, 1)$.
$\therefore$ $l = \left\{(x, y, h) \; | \; \dfrac{x}{a} = \dfrac{y}{b} = \dfrac{h-1}{-1} \right\} $
Claim 1 : $S^{2} \cap l = \left\{(0, 0, 1), \; (\dfrac{2a}{a^{2} + b^{2} + 1}, \dfrac{2b}{a^{2} + b^{2} + 1}, \dfrac{a^{2} + b^{2} - 1}{a^{2} + b^{2} + 1}) \right\} $
Let $\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{h-1}{-1} = t$
$\therefore$ $(at, bt, -t + 1) \in l$
From $(at)^{2} + (bt)^{2} + (-t+1)^{2} = 1$,
$(at, bt, -t+1) \in S^{2}$ $\Leftrightarrow$ $t = 0$ or $t = \dfrac{2}{a^{2} + b^{2} + 1}$
$\therefore$ $S^{2} \cap l = \left\{(0, 0, 1), \; (\dfrac{2a}{a^{2} + b^{2} + 1}, \dfrac{2b}{a^{2} + b^{2} + 1}, \dfrac{a^{2} + b^{2} - 1}{a^{2} + b^{2} + 1}) \right\} $
end
Define $F : \overline{\mathbb{C}} \to S^{2}$ by
$F(z) = \begin{cases}
(\dfrac{ 2 \mathrm{Re}(z) }{\left|z \right|^{2} + 1}, \dfrac{ 2 \mathrm{Im}(z) }{\left|z \right|^{2} + 1}, \dfrac{ \left|z \right|^{2} - 1 }{\left|z \right|^{2} + 1}) & z \in \mathbb{C} \\
\\
(0, 0, 1) & z = \infty
\end{cases} $
By Claim 1, $F$ is well defined.
Show 1 : $F$ is 1-1
Suppose $F(z_{1}) = F(z_{2})$
By definition, the point where the line connecting $(0, 0, 1)$ and $F(z_{i})$ intersects $xy$-plane is $z_{i}$
$\therefore$ $z_{1} = z_{2}$
$\therefore$ $F$ is 1-1
end
Show 2: $F$ is onto
$\forall A \in \mathscr{C}$,
Let $(x, y, h) \in S^{2}$
Let $z$ be the point where the line connecting $(0, 0, 1)$ and $(x, y, h)$ intersects $xy$-plane.
By definition, $F(z) = (x, y, h)$
$\therefore$ $F$ is onto
end
$\therefore$ $\overline{\mathbb{C}}$ is 1-1 onto with $S^{2}$
Def 2
For $z_{1}, z_{2}, z_{3}, z_{4} \in \overline{\mathbb{C}}$,
$(z_{1}, z_{2} ; z_{3}, z_{4}) = \dfrac{ (z_{3} - z_{1})(z_{4} - z_{2}) }{ (z_{3} - z_{2})(z_{4} - z_{1}) }$
is Cross-ratio of $z_{1}, z_{2}, z_{3}, z_{4}$
Thm 2
Let $f(z) = \dfrac{az + b}{cz + d}$
For $z_{1}, z_{2}, z_{3}, z_{4} \in \overline{\mathbb{C}}$,
$(f(z_{1}), f(z_{2}) ; f(z_{3}), f(z_{4})) = (z_{1}, z_{2} ; z_{3}, z_{4})$
Since $f(z) - f(z_{i}) = \dfrac{(ad - bc)(z - z_{i})}{(cz + d)(cz_{i} + d)}$ ,
$\dfrac{ f(z_{3}) - f(z_{1}) }{ f(z_{3}) - f(z_{2}) } = \dfrac{ (cz_{2} + d)(z_{3} - z_{1}) }{(cz_{1} + d)(z_{3} - z_{2})}$
$\dfrac{ f(z_{4}) - f(z_{2}) }{ f(z_{4}) - f(z_{1}) } = \dfrac{(cz_{1} + d)(z_{4} - z_{2})}{(cz_{2} + d)(z_{4} - z_{1})}$
$\therefore$ $\dfrac{ f(z_{3}) - f(z_{1}) }{ f(z_{3}) - f(z_{2}) } \cdot \dfrac{ f(z_{4}) - f(z_{2}) }{ f(z_{4}) - f(z_{1}) } = \dfrac{ z_{3} - z_{1}}{ z_{3} - z_{2} } \cdot \dfrac{ z_{4} - z_{2} }{ z_{4} - z_{1} }$
$\therefore$ $(f(z_{1}), f(z_{2}) ; f(z_{3}), f(z_{4})) = (z_{1}, z_{2} ; z_{3}, z_{4})$
Cor 1
Let $f(z) = \dfrac{az + b}{cz + d}$ and
$f(z_{i}) = w_{i}$ for $i = 1, 2, 3$
Then
$\dfrac{ f(z) - w_{1} }{ f(z) - w_{3} } \cdot \dfrac{ w_{2} - w_{3} }{ w_{2} - w_{1} } = \dfrac{ z - z_{1}}{ z - z_{3} } \cdot \dfrac{ z_{2} - z_{3} }{ z_{2} - z_{1} }$
'복소수함수론 > 복소함수' 카테고리의 다른 글
Mobius transformation (0) | 2024.08.31 |
---|---|
Linear fractional function (0) | 2024.08.31 |
Linear and Quadratic function on $\mathbb{C}$ (0) | 2024.03.12 |
복소수 (0) | 2024.03.08 |