Def 1
Let $\alpha \in \overline{\mathbb{C}}$ such that $\left|\alpha \right| < 1$.
$\phi_{\alpha}(z) = \dfrac{z - \alpha}{1 - \overline{\alpha} z}$
is Mobius transformation.
Thm 1
Let $\phi_{\alpha}(z)$ be Mobius transformation and $A = \left\{z \in \overline{\mathbb{C}} \; | \; \left|z \right| \leq 1 \right\}$. Then
$\phi_{\alpha}(A) = A$
Let $B = \left\{z \in \overline{\mathbb{C}} \; | \; \left|z \right| = 1 \right\}$
By simple calculation,
$\phi_{\alpha} (\dfrac{\alpha}{\left|\alpha \right|}) = \dfrac{\alpha}{\left|\alpha \right|}$
$\phi_{\alpha} (- \dfrac{\alpha}{\left|\alpha \right|}) = - \dfrac{\alpha}{\left|\alpha \right|} $
$\left|\phi_{\alpha}(1) \right| = \left|\dfrac{1 - \alpha}{1 - \overline{\alpha}} \right| = 1$
Since $\dfrac{\alpha}{\left|\alpha \right|}, - \dfrac{\alpha}{\left|\alpha \right|}, 1, \phi_{\alpha}(1) \in B$,
$\phi_{\alpha}(B) = B$
# Linear fractional function - Thm 1
Also
$\left|\phi_{\alpha}(0) \right| = \left|-\alpha \right| < 1$
Since $0, \phi_{\alpha}(0) \in A \setminus B$,
$\phi_{\alpha}(A) = A$
Thm 2
Let $\phi_{\alpha}(z)$ be Mobius transformation. Then
$\phi_{\alpha}(z) = z$ $\Rightarrow$ $z = \pm \dfrac{\alpha}{\left|\alpha \right|}$
Since $\dfrac{z - \alpha}{1 - \overline{\alpha} z} = z$,
$z - \alpha = z - \overline{\alpha} z^{2}$
$\therefore$ $z^{2} = \dfrac{\alpha}{\overline{\alpha}} = \dfrac{\alpha^{2}}{\alpha \overline{\alpha}} = \dfrac{\alpha^{2}}{\left|\alpha \right|^{2}}$
$\therefore$ $z = \pm \dfrac{\alpha}{\left|\alpha \right|}$
Thm 3
Let $f$ be First-order fractional function and $A = \left\{z \in \overline{\mathbb{C}} \; | \; \left|z \right| \leq 1 \right\}$
$f(A) = A$ $\Rightarrow$ $f = \gamma \phi_{\alpha}$ $(\left|\gamma \right| = 1)$
WLOG, WMA $f(z) = \delta \dfrac{z - \alpha}{z - \beta}$ $(\delta, \alpha, \beta \in \mathbb{C})$
Let $B = \left\{z \in \overline{\mathbb{C}} \; | \; \left|z \right| = 1 \right\}$
Since $f(A) = A$ and boundary to boundary,
$f(B) = B$
$\therefore$ $\left| f(\dfrac{\alpha}{\left|\alpha \right|}) \right| = 1$
So there exists $\gamma_{1} \in \mathbb{C}$ s.t.
$\left| \gamma_{1} \right| = 1 \quad \text{and} \quad \gamma_{1} \cdot f(\dfrac{\alpha}{\left|\alpha \right|}) = \dfrac{\alpha}{\left|\alpha \right|}$
Let $g(z) = \gamma_{1} \cdot f(z) = \gamma_{1} \delta \dfrac{z - \alpha}{z - \beta}$
( i.e. $g(\dfrac{\alpha}{\left|\alpha \right|} ) = \dfrac{\alpha}{\left|\alpha \right|} $)
Claim 1 : $g(B) = B$
Since $r_{1}$ is rotation factor and $f(B) = B$,
$g(B) = B$
end
Let line $L = \overleftrightarrow{\alpha \beta} $
Claim 2 : $g(L) = L$
If $\left|z \right| = 1$, $\left|g(z) \right| = \left|\gamma_{1} \right| \left|f(z) \right| = 1$. Therefore
$$\left|\gamma_{1} \delta \right| \left|z - \alpha \right| = \left|z - \beta \right|$$
This represents a circle with its center lying on the line connecting points $\alpha$ and $\beta$.
This circle is $B$, so the origin lies on $L$.
First-order fractional function $g$ maps $\dfrac{\alpha}{\left|\alpha \right|}, \alpha, \beta \in L$ as follows.
$$\left\{\dfrac{\alpha}{\left|\alpha \right|}, \alpha, \beta \right\} \mapsto \left\{\dfrac{\alpha}{\left|\alpha \right|}, 0, \infty \right\}$$
Since $\dfrac{\alpha}{\left|\alpha \right|}, 0, \infty \in L$,
$g(L) = L$
end
Claim 3 : $g = \phi_{\alpha}$
Since $-\dfrac{\alpha}{\left|\alpha \right|} \in B \cap L$,
$g(- \dfrac{\alpha}{\left|\alpha \right|}) \in B \cap L$
Since $g$ is 1-1 onto,
$g(-\dfrac{\alpha}{\left|\alpha \right|} ) = -\dfrac{\alpha}{\left|\alpha \right|} $
So $g$ maps as follows.
$\left\{\dfrac{\alpha}{\left|\alpha \right|}, -\dfrac{\alpha}{\left|\alpha \right|}, \alpha \right\} \mapsto \left\{\dfrac{\alpha}{\left|\alpha \right|}, -\dfrac{\alpha}{\left|\alpha \right|}, 0 \right\}$
When destinations of three points are determined, the first-order fractional function is
determined accordingly, and $\phi_{\alpha}$ also maps as described above.
$\therefore$ $g = \phi_{\alpha}$
end
$\therefore$ $f = \dfrac{1}{\gamma_{1}} \phi_{\alpha} = \gamma \phi_{\alpha}$ $(\left|\gamma \right| = 1)$
Thm 4
If line L satisfies $\phi_{\alpha}(L) = L$, then
$L$ passes through the origin and the point $\alpha$.
Let line $L$ that satisfies $\phi_{\alpha}(L) = L$.
Since $\infty \in L$,
$$\phi_{\alpha}(\infty) = - \frac{1}{\overline{\alpha}} = - \frac{\alpha}{\left|\alpha \right|^{2}} \in L$$
Since $\phi_{\alpha}(\frac{1}{\overline{\alpha}}) = \infty \in L$ and $\phi_{\alpha}$ is 1-1 onto,
$$\frac{1}{\overline{\alpha}} = \frac{\alpha}{\left|\alpha \right|^{2}} \in L$$
$\therefore$ $L$ passes through the origin and the point $\alpha$.
'복소수함수론 > 복소함수' 카테고리의 다른 글
1 point compactification and Cross-ratio (0) | 2024.08.31 |
---|---|
Linear fractional function (0) | 2024.08.31 |
Linear and Quadratic function on $\mathbb{C}$ (0) | 2024.03.12 |
복소수 (0) | 2024.03.08 |