Def 1
$G$ : group, $H \leq G$
Let $g \in G$
1. The left coset of $H$ containing $g$ is
$gH = \left\{gh \; | \; h \in H \right\}$ $(\subset G)$
2. The right coset of $H$ containing $g$ is
$Hg = \left\{hg \; | \; h \in H \right\}$ $(\subset G)$
Thm 1
Let $G$ be a group and $H \leq G$. Then for $a, b, c \in G$,
1. (a) $aH = bH$ $\Leftrightarrow$ $a \in bH$ ($\Leftrightarrow$ $b \in aH$)
$\Leftrightarrow$ $a = bh$ for some $h \in H$ ($\Leftrightarrow$ $b = ah$ for some $h \in H$)
(b) $Ha = Hb$ $\Leftrightarrow$ $a \in Hb$
2. (a) $aH = bH$ $\Leftrightarrow$ $(ca)H = (cb)H$
(b) $Ha = Hb$ $\Leftrightarrow$ $H(ac) = H(bc)$
pf)
(a)
$\Rightarrow)$
$a = ae \in aH = bH$
$\Leftarrow)$
$\forall x \in aH$
So there exists $h \in H$ s.t.
$x = ah$
Since $a \in bH$, there exists $h' \in H$ s.t.
$a = bh'$
$\therefore$ $x = (bh')h = b(h'h) \in bH$
$\therefore$ $aH \subset bH$
Similarly we can show $bH \subset aH$
$\therefore$ $aH = bH$
(b)
Similarly
(a)
$\Rightarrow)$
By 1, there exists $h \in H$ s.t.
$a = bh$
$\therefore$ $ca = cbh$
$\therefore$ $caH = cbH$
$\Leftarrow)$
By 1, there exists $h \in H$ s.t.
$ca = cbh$
$\therefore$ $a = bh$
$\therefore$ $aH = bH$
(b)
Similarly
Cor 1
1. $aH = bH$ $\Leftrightarrow$ $b^{-1}a H = H$
$\Leftrightarrow$ $(a^{-1}b)H = H$
2. $Ha = Hb$ $\Leftrightarrow$ $H = H(ba^{-1})$
$\Leftrightarrow$ $H = H(ab^{-1})$
Thm 2
Let $H \leq G$. Then $\forall a, b \in G$,
either $aH = bH$ or $aH \cap bH = \varnothing$
Case 1 : $aH \cap bH = \varnothing$
It is clear.
end
Case 2 : $aH \cap bH \neq \varnothing$
Then there exists $c$ s.t.
$c \in aH \cap bH$
Since $c \in aH$ and $c \in bH$, by Thm 1
$cH = aH$ and $cH = bH$
$\therefore$ $aH = bH$
end
Cor 2
$G$ is a disjoint union of left cosets
Thm 3
Let $H \leq G$
For $a, b \in G$, define $a \sim b$ if $aH = bH$. Then
$\sim$ is an equivalence relation and $[a] = aH$
Show 1 : $a \sim a$
It is clear.
end
Show 2 : $a \sim b$ $\Rightarrow$ $b \sim a$
$a \sim b$ $\Rightarrow$ $aH = bH$ $\Rightarrow$ $bH = aH$ $\Rightarrow$ $b \sim a$
end
Show 3 : $a \sim b$, $b \sim c$ $\Rightarrow$ $a \sim c$
$a \sim b$ $\Rightarrow$ $aH = bH$
$b \sim c$ $\Rightarrow$ $bH = cH$
$\therefore$ $aH = cH$
$\therefore$ $a \sim c$
end
Show 4 : $[a] = aH$
$[a] = \left\{x \in G \; | \; x \sim a \right\}$
$= \left\{x \in G \; | \; xH = aH \right\}$
$= \left\{x \in G \; | \; x \in aH \right\}$
$= aH$
end
Thm 4
Let $H \leq G$. For $a, b \in G$,
$\left|aH \right| = \left|bH \right| = \left|H \right|$
($\left|Ha \right| = \left|Hb \right| = \left|H \right|$)
# So the number of left cosets of $H$ and right cosets of $H$ is the same.
Define $\phi : H \to aH$ by
$\phi(h) = ah$
Show : $\phi$ is 1-1
$\forall h, h' \in H$
$\phi(h) = \phi(h')$ $\Rightarrow$ $ah = ah'$ $\Rightarrow$ $h = h'$
end
Thm 5 Theorem of Lagrange
Let $G$ be a finite group. Then
$H \leq G$ $\Rightarrow$ $\left|H \right| \mid \left|G \right|$
By Cor 2,
$G$ is a disjoint union of left cosets of $H$
Since $G$ is finite, there exists $a_{1}, a_{2}, \cdots, a_{n} \in G$ s.t.
$G = \displaystyle \bigcup_{i=1}^{n}a_{i}H$ ( if $i \neq j$, $aH_{i} \cap a_{j}H = \varnothing$ )
By Thm 4,
$\left|G \right| = \displaystyle \sum_{i=1}^{n} \left|a_{i}H \right| = \sum_{i=1}^{n} \left|H \right| = n \left|H \right|$
$\therefore$ $\left|H \right| \mid \left|G \right|$
Cor 3
1. If $G$ is a finite group and $a \in G$, then $O(a) \mid \left|G \right|$
2. If $G$ is a group with $\left|G \right| = p$ ( prime ), then $G \simeq \mathbb{Z}_{p}$
Def 2
Let $H \leq G$
The index of $H$ in $G$ is
$(G : H)$ $=$ number of left cosets of $H$ ( $=$ number of right cosets of $H$ )
Prop 1
1. If $\left|G \right| < \infty$, then $(G : H) = \dfrac{\left|G \right|}{\left|H \right|}$
2. If $K \leq H \leq G$, then $(G : K) = (G : H)(H : K)$
# 1 is clearly
pf)
Since $H \leq G$, there exists $a_{i} \in G$ for $i \in I$ s.t.
$G = \displaystyle \bigcup_{i \in I} a_{i}H$
& If $i_{1} \neq i_{2}$, $a_{i_{1}}H \cap a_{i_{2}}H = \varnothing$
Since $K \leq H$, there exists $b_{j} \in H$ for $j \in J$ s.t.
$H = \displaystyle \bigcup_{j \in J} b_{j}K$
& If $j_{1} \neq j_{2}$, $b_{j_{1}}K \cap b_{j_{2}}K = \varnothing$
It is sufficient to show
$\left\{(a_{i}b_{j})K \; | \; i \in I, \; j \in J \right\}$ is the collection of distinct left cosets of $K$ in $H$
Claim 1 : Fix $i \in I$. $\forall j \in J$, $(a_{i}b_{j})K \subset a_{i}H$
$\forall g \in (a_{i}b_{j})K$
So there exists $k \in K$ s.t.
$g = a_{i}b_{j}k$
Since $K \subset H$,
$k \in H$
$\therefore$ $b_{j}k \in H$
$\therefore$ $g \in a_{i}H$
$\therefore$ $(a_{i}b_{j})K \subset a_{i}H$
end
Claim 2 : For $i \in I$, $a_{i}H \subset \displaystyle \bigcup_{i \in J} (a_{i}b_{j}) K$
$\forall g \in a_{i}H$
So there exists $h \in H$ s.t.
$g = a_{i}h$
Since $h \in H = \displaystyle \bigcup_{j \in J} b_{j}K$, there exists $j_{1} \in J$ s.t.
$h \in b_{j_{1}}K$
So there exists $k \in K$ s.t.
$h = b_{j_{1}}k$
$\therefore$ $g = a_{i}h = a_{i}b_{j_{1}}k \in a_{i}b_{j_{1}}K$
$\therefore$ $g \in \displaystyle \bigcup_{j \in J} (a_{i}b_{j})K$
$\therefore$ $a_{i}H \subset \displaystyle \bigcup_{j \in J} (a_{i}b_{j})K$
end
Show 1 : $\displaystyle \bigcup_{(i, j) \in I \times J} (a_{i}b_{j}) K = G$
By Claim 1,
$\displaystyle \bigcup_{j \in J} (a_{i}b_{j}) K \subset a_{i}H$
By Claim 2,
$a_{i}H = \displaystyle \bigcup_{j \in J} (a_{i}b_{j}) K $
Since $G = \displaystyle \bigcup_{i \in I} a_{i} H$,
$\displaystyle \bigcup_{(i, j) \in I \times J} (a_{i}b_{j}) K = G$
end
Show 2 : If $(i, j) \neq (p, q)$, $(a_{i}b_{j}) K \cap (a_{p}b_{q}) K = \varnothing$
- case 1 : $i \neq p$
By Claim 1,
$(a_{i}b_{j})K \subset a_{i}H$
$(a_{p}b_{q})K \subset a_{p}H$
Since $a_{i}H \cap a_{p}H = \varnothing$,
$(a_{i}b_{j}) K \cap (a_{p}b_{q}) K = \varnothing$
- case 2 : $i = p$, $j \neq q$
So $b_{j}K \cap b_{q}K = \varnothing$
By Thm 2,
$b_{j}K \neq b_{q}K$
By Thm 1 - 2,
$(a_{i}b_{j})K \neq (a_{i}b_{q})K$
By Thm 2,
$(a_{i}b_{j}) K \cap (a_{p}b_{q}) K = \varnothing$
end
'군론 > Permutation, Cosets, and Direct products' 카테고리의 다른 글
Direct products and finitely generated abelian group (0) | 2024.05.23 |
---|---|
oribits, cycles (0) | 2024.05.08 |
Group of permutations (0) | 2024.04.30 |