Def 1
Let $A$ be a set
1. A permutation of $A$ is a 1-1 onto function from $A$ to $A$
2. The symmetric group on $A$ is
$S_{A} = \left\{\sigma \; | \; \sigma : A \to A \text{ is a permutaion} \right\}$
(or $\mathrm{Sym}(A)$)
3. $\sigma, \tau \in S_{A}$ , $\sigma \tau = \sigma \circ \tau$ $(\in S_{A})$
Notation
$B_{n} = \left\{1, 2, \cdots, n \right\} $
$S_{n} = S_{B_{n}}$
$\sigma \in S_{n}$ , $\sigma(i) = a_{i}$ $(1 \leq i \leq n)$ $\Rightarrow$ $\sigma =\begin{pmatrix}
1 & 2 & \cdots & n \\
a_{1} & a_{2} & \cdots & a_{n} \\
\end{pmatrix} $
Thm 1
Let $A$ and $B$ be sets.
1. $S_{A}$ is a group
2. $\left|S_{n} \right| = n!$
3. $\left|A \right| = \left|B \right|$ $\Rightarrow$ $S_{A} \simeq S_{B}$
pf)
Show 1 : associative
The composition of functions is associative.
end
Show 2 : identity
$e = \mathrm{id}_{A}$
$(\sigma \circ \mathrm{id}_{A} = \mathrm{id}_{A} \circ \sigma = \sigma)$
end
Show 3 : inverse
The inverse of $\sigma \in S_{A}$ is the inverse function $\sigma^{-1}$
$(\sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = \mathrm{id}_{A})$
end
Since $\left|A \right| = \left|B \right|$, there exists 1-1 onto function $f : A \to B$
Define $\phi : S_{A} \to S_{B}$ by
$\phi(\sigma) = f \circ \sigma \circ f^{-1}$
Show 1 : $\phi$ is 1-1
$\forall \sigma_{1}, \sigma_{2} \in S_{A}$
$\phi(\sigma_{1}) = \phi(\sigma_{2})$ $\Rightarrow$ $f \circ \sigma_{1} \circ f^{-1} = f \circ \sigma_{2} \circ f^{-1}$ $\Rightarrow$ $\sigma_{1} = \sigma_{2}$
end
Show 2 : $\phi$ is onto
$\forall \tau \in S_{B}$
Since $f, \tau$ is 1-1 onto,
$f^{-1} \circ \tau \circ f \in S_{A}$
Also
$\phi(f^{-1} \circ \tau \circ f) = f \circ (f^{-1} \circ \tau \circ f) \circ f^{-1} = \tau$
end
Show 3 : $\phi$ is a homomorphism
For $\sigma, \tau \in S_{A}$
$\phi(\sigma \tau) = f \circ (\sigma \tau) \circ f^{-1}$
$= f \circ (\sigma \circ \tau) \circ f^{-1}$
$= f \circ \sigma \circ \mathrm{id}_{A} \circ \tau \circ f^{-1}$
$= (f \circ \sigma \circ f^{-1}) \circ (f \circ \tau \circ f^{-1})$
$= \phi (\sigma) \phi (\tau)$
end
Def 2
A group of permutations means a subgroup of $S_{A}$
Def 3
$D_{n}$ $=$ group of symmetries of a regular $n$-gon
We called Dihedral group
# $\left|D_{n} \right| = 2n $, $S_{3} \simeq D_{3}$
Prop 1
$S_{3}$ is nonabelian
Let
$\rho_{0} = \begin{pmatrix}
1 & 2 & 3 \\
1 & 2 & 3 \\
\end{pmatrix}$, $\rho_{1} = \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
\end{pmatrix}$, $\rho_{2} = \begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2 \\
\end{pmatrix}$
$\mu_{1} = \begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2 \\
\end{pmatrix}$, $\mu_{2} = \begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1 \\
\end{pmatrix}$, $\mu_{3} = \begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3 \\
\end{pmatrix}$
So $S_{3} = \left\{\rho_{0}, \rho_{1}, \rho_{2}, \mu_{1}, \mu_{2}, \mu_{3} \right\}$
$\rho_{1} \mu_{1} = \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
\end{pmatrix} \begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2 \\
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3 \\
\end{pmatrix} = \mu_{3}$
$\mu_{1} \rho_{1} = \begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2 \\
\end{pmatrix} \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1 \\
\end{pmatrix} = \mu_{2}$
$\therefore$ $S_{3}$ is nonabelian
Prop 2
Let $G, G'$ be groups and $\phi : G \to G'$ is 1-1 homomorphism. Then
$G \simeq \phi[G]$ $(\leq G')$
# $\phi[G] \leq G'$ is proved by Homomorphism and Factor Groups - Homomorphism - Thm 1
Since $\phi : G \to G'$ is 1-1 homomorphism,
$\phi : G \to \phi[G]$ is isomorphism.
$\therefore$ $G \simeq \phi[G]$
Thm 2
Let $n < m$. Then
there exists 1-1 homomorphism $\phi : S_{n} \to S_{m}$
# So we can consider $S_{n}$ as a subgroup of $S_{m}$
Define $\phi : S_{n} \to S_{m}$ as follows.
For $\sigma = \begin{pmatrix}
1 & 2 & \cdots & n \\
a_{1} & a_{2} & \cdots & a_{n} \\
\end{pmatrix} \in S_{n}$,
$\phi(\sigma) = \begin{pmatrix}
1 & 2 & \cdots & n & n+1 & \cdots & m \\
a_{1} & a_{2} & \cdots & a_{n} & n+1 & \cdots & m \\
\end{pmatrix}$
Then $\phi$ is clearly 1-1 homomorphism
Cor 1
$S_{n}$ is nonabelian if $n \geq 3$
Thm 3 Caley's Theorem
Every Group $G$ is isomorphic to a group of permutations.
(That is if $G$ is group, there is a $S_{A}$ and $H \leq S_{A}$ such that $G \simeq H$)
By Prop 2, it is sufficient to show
there exists a 1-1 homorphism $\phi : G \to S_{A}$ for some set $A$
Now we have $S_{G} = \left\{\sigma \; | \; \sigma : G \to G \text{ is a permutaion} \right\} $
Fix $g \in G$, and define $\lambda_{g} : G \to G$ by
$\lambda_{g}(x) = gx$
Claim 1 : $\lambda_{g} \in S_{G}$
$(1)$ $\lambda_{g}$ is 1-1
For $x, y \in G$,
$\lambda_{g}(x) = \lambda_{g}(y)$ $\Rightarrow$ $gx = gy$ $\Rightarrow$ $x = y$
$(2)$ $\lambda_{g}$ is onto
For $y \in G$,
$\lambda_{g}(g^{-1}y) = g(g^{-1}y) = y$ and $g^{-1}y \in G$
end
Now define $\phi : G \to S_{G}$ by
$\phi(g) = \lambda_{g}$
Claim 2 : $\phi$ is 1-1 homomorphism
$(1)$ $\phi$ is 1-1
$\forall a, b \in G$,
$\phi(a) = \phi(b)$ $\Rightarrow$ $\lambda_{a} = \lambda_{b}$ $\Rightarrow$ $\lambda_{a}(e) = \lambda_{b}(e)$ $\Rightarrow$ $a = b$
$(2)$ $\phi$ is homomorphism
$\forall a, b \in G$,
For all $x \in G$,
$(\phi(ab))(x) = \lambda_{ab}(x)$
$= (ab)x$
$= a(bx)$
$= \phi(a)(bx)$
$= \phi(a)(\phi(b)(x))$
$= (\phi(a) \phi(b))(x)$
$\therefore$ $\phi(ab) = \phi(a) \phi(b)$
end
'군론 > Permutation, Cosets, and Direct products' 카테고리의 다른 글
| Direct products and finitely generated abelian group (0) | 2024.05.23 |
|---|---|
| Cosets and Theorem of Lagrange (0) | 2024.05.13 |
| oribits, cycles (0) | 2024.05.08 |