Def 1
Let $f : \mathbb{R} \to \mathbb{C}$ by
$f(t) = u(t) + i v(t)$
In this case, if both $u$ and $v$ are integrable, then $f$ is said to be integrable.
The same applies to differentiation. We define
$\displaystyle \int f \; \mathrm{d}t = \int u \; \mathrm{d}t + i \int v \; \mathrm{d}t$
$\displaystyle f' = u' + i v'$
Prop 1
Let $f : \mathbb{R} \to \mathbb{C}$ . For $\alpha \in \mathbb{C}$,
$\displaystyle \int \alpha f \; \mathrm{d}t = \alpha \int f \; \mathrm{d}t$
Let $\alpha = a + ib$ and $f(t) = u(t) + iv(t)$ .
Since $\alpha f = (au - bv) + i (av + bu)$,
$\displaystyle \int \alpha f(t) = \int (au - bv) \; \mathrm{d}t + i \int (av + bu) \; \mathrm{d}t$
$\displaystyle = (a \int u \; \mathrm{d}t - b \int v \; \mathrm{d}t) + i (a \int v \; \mathrm{d}t + b \int u \; \mathrm{d}t)$
$\displaystyle = (a + ib)(\int u \; \mathrm{d}t + i \int v \; \mathrm{d}t)$
$\displaystyle = \alpha \int f \; \mathrm{d}t$
Prop 2
Let $f : \mathbb{R} \to \mathbb{C}$
$\displaystyle \left|\int_{a}^{b} f \; \mathrm{d}t \right| \leq \int_{a}^{b} \left|f \right| \; \mathrm{d}t$
Let $\displaystyle \int_{a}^{b} f \; \mathrm{d}t = re^{i \theta}$
By Prop 1,
$\displaystyle \int_{a}^{b} e^{-i \theta} f \; \mathrm{d}t = r \in \mathbb{R}$
Let $\mathrm{Re} \; (e^{-i \theta}f(t)) = u(t)$
Since $u \leq \left|e^{-i \theta}f \right| = \left|f \right|$,
$\displaystyle \left|\int_{a}^{b} f \; \mathrm{d}t \right| = r = \int_{a}^{b} e^{-i \theta} f \; \mathrm{d}t = \int_{a}^{b} u(t) \; \mathrm{d}t \leq \int_{a}^{b} \left|f \right| \; \mathrm{d}t$
Prop 3
Let $f : \mathbb{R} \to \mathbb{C}$
$\displaystyle \int_{b}^{a} f \; \mathrm{d}t = - \int_{a}^{b} f \; \mathrm{d}t$
Let $f(t) = u(t) + iv(t)$
Therefore
$\displaystyle \int_{b}^{a} f \; \mathrm{d}t = \int_{b}^{a} u \; \mathrm{d}t + i \int_{b}^{a} v \; \mathrm{d}t$
$= - \displaystyle \int_{a}^{b} u \; \mathrm{d}t - i \int_{a}^{b} v \; \mathrm{d}t$
$= - \displaystyle \int_{a}^{b} f \; \mathrm{d}t$
'복소수함수론 > 코시 적분공식' 카테고리의 다른 글
Cauchy-Goursat Theorem (1) | 2024.09.09 |
---|---|
The Fundamental Theorem of Calculus (0) | 2024.09.09 |
Line integral of complex function (0) | 2024.09.07 |