본문 바로가기
군론/Group

Binary operation

by 수학과 맛보기 2024. 3. 11.

 

Def 1

Let $S$ be a set. A binary operation on $S$ is a fuction $* : S \times S \to S$

# $(a, b) \mapsto *(a, b)$

 

Notation

$*(a, b) = a*b \; (=ab)$

 

 

 

Def 2

A binary operation $*$ on a set $S$ is associative if $(a * b) * c = a * (b * c)$  for all $a, b, c \in S$.

(We can write $a * b * c$)

 

 

 

Def 3

A binary operation $*$ on a set $S$ is commutative if $a * b = b * a$  for all $a, b \in S$.

 

 

 

Example

set operation binary associative commutative
$\mathbb{Z}$ $a * b = a + b$ O O O
$\mathbb{R}$ $a * b = a \times b$ O O O
$\mathbb{R} \setminus \left\{0 \right\}$ $a * b = a \div b$ O X X
$M_{n}(\mathbb{R})$ $A * B = AB$ O O X
$\mathbb{Z}$ $n \mapsto 2n$
$(\mathbb{Z} \to \mathbb{Z})$
X    
$V$
(scalar multiplication)
$(r, \mathbf{u}) \mapsto r \mathbf{u}$
$(\mathbb{R} \times V \to V)$
X    
$V$
(inner product)
$(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u} \cdot \mathbf{v}$
$(V \times V \to \mathbb{R})$
X    
$M_{n}(\mathbb{R})$ $A*B = AB - BA$ O X X
$\mathbb{R}^{3}$
(cross product)
$\mathbf{u}*\mathbf{v} = \mathbf{u} \times \mathbf{v}$ O X X

 

 

 

Def 4

$S$ : set

$*$ : binary operation on $S$

Let $H$ be a subset of $S$.

1.  $H$ is closed under $*$ if $a * b \in H$  for all $a, b \in H$.

2.  In this case, $* : H \times H \to H$ is called the induced operator of $*$ on $H$.

 

 

 

Ex

$\div$  on  $\mathbb{R}^{+}$  :  $\mathbb{Z}^{+} \subset \mathbb{R}^{+}$

$\Rightarrow$  $\mathbb{Z}^{+}$ is not closed under $\div$

 

$+, \times$ on $\mathbb{Z}$  :  $\vartheta \overset{\underset{\mathrm{def}}{}}{=} \left\{2n+1 \; | n \in \mathbb{Z} \right\} \subset \mathbb{Z}$

$\Rightarrow$  $\vartheta$ is not closed under $+$, but $\vartheta$ is closed under $\times$

 

 

 

 

 

 

'군론 > Group' 카테고리의 다른 글

Subgroup  (0) 2024.04.01
Group  (0) 2024.03.20
Isomorphic binary structures  (0) 2024.03.13
Examples  (0) 2024.03.11
집합과 관계  (0) 2024.03.07