정의1
Let $D$ be a positive interger such that $\sqrt{D} \notin \mathbb{N}$.
Then $x^{2} - Dy^{2} = 1$ is called a Pell equation.
정리1
Let $D \in \mathbb{N}$ s.t. $\sqrt{D} \notin \mathbb{N}$.
Then, for the Pell equation $x^{2} - Dy^{2} = 1$ the following hold
1. There exists positive intergers and $x_{0}$ and $y_{0}$ s.t. $x{_{0}}^{2} - Dy{_{0}}^{2} = 1$
2. Let $(x_{1}, y_{1})$ be a pair of positive intergers s.t. $x{_{1}}^{2} - Dy{_{1}}^{2} = 1$ and $x_{1}$ is the smallest among $x \in \mathbb{N}$ which satisfies $x^{2} - Dy^{2} = 1$ for some $y \in \mathbb{N}$.
Then $u^{2} - Dv^{2} = 1$ for some $u, v \in \mathbb{N}$.
$\Leftrightarrow$ $u+v\sqrt{D} = (x_{1} + y_{1}\sqrt{D})^{n}$ for some $n \in \mathbb{N}$.
pf)
1.
hard
2.
Similar to the case when $D=2$
Why $\sqrt{D} \notin \mathbb{N}$?
Suppose 1 : $\sqrt{D} \in \mathbb{N}$ (i.e. $D = A^{2}$ $(A \in \mathbb{N})$), $x^{2} - Dy^{2} = 1$ for some $x,y \in \mathbb{N}$
$x^{2} - A^{2}y^{2} = 1$
$\Leftrightarrow$ $(x+Ay)(x-Ay) = 1$
Since $x, y, A \in \mathbb{N}$,
so $x+Ay \geq 2$ and $0< x-Ay = \frac{1}{x+Ay} < 1$
Since $x, y, A \in \mathbb{N}$,
so $x-Ay$ must be a interger.
Contradiction
$\therefore$ $x^{2} - A^{2}y^{2} = 1$ has no interger solutions.
'정수론 > Pell's equation' 카테고리의 다른 글
Diophantine approximation (0) | 2023.12.24 |
---|---|
Square - Triangular Numbers (0) | 2023.12.23 |