일반위상/Compact Space

Compact Theorem 2

수학과 맛보기 2024. 9. 23. 23:02

 

Thm 1 Bolzano - Weierstrass Theorem

Let $(X, \mathscr{T})$ be a compact space  and  $A$ be an infinite subset in $X$. Then

$A$ has a limit point in $X$.

 

더보기

  Suppose : $A$ don't have a limit point in $X$

  So for each $x \in X$, there exists $U_{x} \in \mathscr{T}$ containing $x$  s.t.

  $(U_{x} \setminus \left\{x \right\}) \cap A = \varnothing$

  $\therefore$  $\left\{U_{x} \; | \; x \in X \right\}$ is open cover of $X$.

 

 

  Since $X$ is compact, there exists $x_{1}, x_{2}, \cdots, x_{n} \in X$  s.t.

  $X = \displaystyle \bigcup_{i=1}^{n} U_{x_{i}}$

 

  Therefore

  $A = X \cap A = (\displaystyle \bigcup_{i=1}^{n} U_{x_{i}} ) \cap A= \bigcup_{i=1}^{n} (U_{x_{i}} \cap A)$

 

  Since $(U_{x_{i}} \setminus \left\{x_{i} \right\}) \cap A = \varnothing$,

  $A$ is finite set

 

  Contradiction

 

 

 

Thm 2

Let $A \subseteq (\mathbb{R}^{n}, \text{usual})$

T.F.A.E.

$(1)$  $A$ is compact

$(2)$  $A$ is closed set in $\mathbb{R}^{n}$  and  bounded

 

pf)

$(1) \Rightarrow (2)$

더보기

  Since $\mathbb{R}^{n}$ is Hausdorff  and  $A$ is compact, by Thm 3

  $A$ is closed set in $\mathbb{R}^{n}$

 

  Consider $\left\{B_{n}(O) \; | \; n \in \mathbb{N} \right\}$, the open cover of $A$

  Since $A$ is compact, there exists $N \in \mathbb{N}$  s.t.

  $A \subseteq B_{N}(O)$

  $\therefore$  $A$ is bounded

 

$(2) \Leftarrow (1)$

더보기

  Since $A$ is bounded, there exists $s > 0$  s.t.

  $A \subseteq [-s, s]^{n}$

  $\therefore$  $A =  A \cap [-s, s]^{n}$

 

  Since $A$ is closed set in $\mathbb{R}^{n}$, by Thm 2 - 3

  $A$ is closed set in $[-s, s]^{n}$

 

  By Cor 3,

  $[-s, s]^{n}$ is compact  

 

  Since $A$ is closed set in $[-s, s]^{n}$, by Thm 2

  $A$ is compact

 

 

 

Thm 3

Let $X$ be a compact space  and  $f : X \to \mathbb{R}$ be continuous. Then

$f$ achieves maximum value and minimum value.

 

더보기

  Since $f$ is continuous  and  $X$ is compact, by Thm 1

  $f(X)$ is compact

  By Thm 2,

  $f(X)$ is closed set in $\mathbb{R}$  and  bounded

  $\therefore$  $f(X)$ has a least upper bound $M$ and greatest lower bound $m$.

 

  Since $f(X)$ is closed set,

  $m, M \in \overline{f(X)} = f(X)$

 

  So there exists $x, y \in X$  s.t.

  $f(x) = m$,     $f(y) = M$

 

  $\therefore$   $f$ achieves maximum value and minimum value.

 

 

 

Def 1

Let $X$ be a topological space.

Let $\mathscr{C} = \left\{C_{\alpha} \; | \; \alpha \in I \right\}$ be a collection of closed set in $X$.

$\mathscr{C}$ satisfies finite intersection property if

$\forall \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in I$,     $\displaystyle \bigcap_{i = 1}^{n} C_{\alpha_{i}} \neq \varnothing$

 

 

 

Thm 4

Let $(X, \mathscr{T})$ be a topological space.

T.F.A.E.

$(1)$  $X$ is compact

$(2)$  Let $\mathscr{C}$ be a collection of closed set in $X$.

$\mathscr{C}$ satisfies finite intersection property  $\Rightarrow$  $\displaystyle \bigcap_{C \in \mathscr{C}} C \neq \varnothing$

 

pf)
$(1) \Rightarrow (2)$

더보기

  Let $\mathscr{C}$ be a collection of closed set in $X$ satisfying finite intersection property.

 

  Suppose : $\displaystyle \bigcap_{C \in \mathscr{C}} C = \varnothing$

  So $\displaystyle \bigcup_{C \in \mathscr{C}} (X \setminus C) = X \setminus (\bigcap_{C \in \mathscr{C}} C) = X$

  $\therefore$  $\left\{X \setminus C \; | \; C \in \mathscr{C} \right\}$ is open cover of $X$

 

  Since $X$ is compact, there exists $C_{1}, C_{2}, \cdots, C_{n} \in \mathscr{C}$  s.t.

  $X = \displaystyle \bigcup_{i=1}^{n} (X \setminus C_{i})$

  $\therefore$  $\displaystyle \bigcap_{i=1}^{n} C_{i} = \varnothing$

 

  Contradiction

 

$(2) \Leftarrow (1)$

더보기

  Suppose : $X$ is not compact

  So there exists $U = \left\{U_{\alpha} \; | \; \alpha \in I \right\}$ be open cover of $X$  s.t.

  $U$ don't have finite subcover

  So

  $\forall \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in I$,     $\displaystyle \bigcup_{i=1}^{n} U_{\alpha_{i}} \neq X$

 

 

  Let $\mathscr{C} = \left\{X \setminus U_{\alpha} \; | \; \alpha \in I \right\}$

  So $\mathscr{C}$ be collection of closed set in $X$.

 

  Also $\forall \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in I$,

  $\displaystyle \bigcap_{i = 1}^{n} (X \setminus U_{\alpha_{i}}) = X \setminus (\bigcup_{i = 1}^{n} U_{\alpha_{i}}) \neq \varnothing$

 

  $\therefore$  $\mathscr{C}$ satisfies finite intersection property.

 

  $\therefore$  $\displaystyle \bigcap_{\alpha \in I} (X \setminus U_{\alpha}) \neq \varnothing$

  $\therefore$  $\displaystyle \bigcup_{\alpha \in I} U_{\alpha} \neq X$

 

  Contradiction

 

 

 

Def 2

Let $(X, \mathscr{T})$ be topological space.

Let sequence $\left\{x_{n} \right\}$ in $X$ by

$x_{n} : \mathbb{N} \to X$

We define

$\displaystyle \lim_{n \to \infty} x_{n} = x$ 

$\Leftrightarrow$  $\forall V \in \mathscr{T}$ containing $x$,  $\exists N >0$  s.t.  $n \geq N$  $\Rightarrow$  $x_{n} \in V$

 

So

$\displaystyle \lim_{n \to \infty} x_{n} \neq x$

$\Leftrightarrow$  $\exists V \in \mathscr{T}$ containing $x$,  $\forall N > 0$,  $\exists M \geq N$  s.t.  $x_{M} \notin V$

 

 

 

Def 3

Let $X$ be a topological space.

1.  $X$ has the Bolzano-Weierstress property if

every infinite subset of $X$ has a limit point in $X$.

 

$X$ : limit point compact space

 

2.  $X$ is a sequentially compact space if

every sequence has a convergent subsequence in $X$.