Hausdorff
Def 1
Let $(X, \mathscr{T})$ be a topological space. $X$ is Hausdorff if
$\forall a, b \; (a \neq b) \in X$, there exists $U, V \in \mathscr{T}$ s.t.
$a \in U$, $b \in V$, $U \cap V = \varnothing$
Thm 1
$X$ is metrizable $\Rightarrow$ $X$ is Hausdorff
Let $\mathscr{T}$ be a topology of $X$
$\forall a, b \; (a \neq b) \in X$
Let $r = d(a, b)$ $(>0)$
$B_{\frac{r}{3}}(a), B_{\frac{r}{3}}(b) \in \mathscr{T}$
It is clearly $a \in B_{\frac{r}{3}}(a)$ and $b \in B_{\frac{r}{3}}(b)$.
Suppose : $B_{\frac{r}{3}}(a) \cap B_{\frac{r}{3}}(b) \neq \varnothing$
So there exists $y$ s.t.
$y \in B_{\frac{r}{3}}(a) \cap B_{\frac{r}{3}}(b)$
Therefore
$r = d(a, b) \leq d(a, y) + d(y, b)$
$< \frac{r}{3} + \frac{r}{3} = \frac{2r}{3}$
Contradiction
$\therefore$ $B_{\frac{r}{3}}(a) \cap B_{\frac{r}{3}}(b) = \varnothing$
$\therefore$ $X$ is Hausdorff
Cor 1
Let $X$ be a set and $\left|X \right| \geq 2$ . Then
$(X, \text{discrete topology})$ is Hausdorff
# Prop 1
Cor 2
Let $X$ be a set and $\left|X \right| \geq 2$ . Then
$(X, \text{indiscrete topology})$ is not Hausdorff
# So $(X, \text{indiscrete topology})$ is not metrizable
Prop 1
Let $X$ be an infinite set. Then
$(X, \text{finite complement topology})$ is not Hausdorff
# So $(X, \text{finite complement topology})$ is not metrizable
$\forall U, V \; (\neq \varnothing) \in \mathscr{T}$
Suppose : $U \cap V = \varnothing$
So $U \subseteq X \setminus V$.
Since $U, V \in \mathscr{T}$ and $X$ is an infinite set,
$U$ is infinite set and $X \setminus V$ is finite set.
Contradiction
$\therefore$ $U \cap V \neq \varnothing$
$\therefore$ $(X, \text{finite complement topology})$ is not Hausdorff
Prop 2
$(\mathbb{R}, \text{usual})$ is Hausdorff
$\forall a, b \; (a \neq b) \in \mathbb{R}$
WLOG, WMA
$a < b$
Let $d = b - a$
Let $U = (a - \dfrac{d}{2}, a + \dfrac{d}{2})$ and $V = (b - \dfrac{d}{2}, b + \dfrac{d}{2})$
$\therefore$ $a \in U$ and $b \in V$
Since $(b - \dfrac{d}{2}) - (a + \dfrac{d}{2}) = 0$,
$U \cap V = \varnothing$
$\therefore$ $(\mathbb{R}, \text{usual})$ is Hausdorff