집합과 관계
Basic set theory
1. $X, Y$ : sets
product set : $X \times Y = \left\{(x, y) \; | \; x \in X, y \in Y \right\}$
2. $X_{1}, \cdots, X_{n}$ : sets
$n$-tuple : $X_{1} \times \cdots \times X_{n} = \left\{(x_{1}, \cdots, x_{n}) \; | \; x_{i} \in X_{i}, \; 1 \leq i \leq n \right\}$
3. $B_{m} = \left\{1, 2, \cdots, m \right\}$, $X$ : set
① $X$ is finite if there exists a $1-1$ correspondence $f : X \to B_{m}$ for some $m$
② $X$ is infinite if $X$ is not finite
③ If there is a $1-1$ correspondence $X \to B_{m}$, the cordinality of $X$ is defined by
$\left|X \right| = n(X) = m$
(equivalence) relation on sets
Def 1
$S$ : set
A relation on $S$ is a subset $\mathcal{R}$ of $S \times S$
notation
$(a, b) \in \mathcal{R}$ $\Leftrightarrow$ $a \mathcal{R} b$ $\Leftrightarrow$ $a \sim b$
Def 2
An equivalence relation $\sim$ on $S$ is a relation satisfying the following
$(\mathrm{i})$ (reflexive) $\forall a \in S$, $a \sim a$
$(\mathrm{ii})$ (symmetric) $a \sim b$ $\Rightarrow$ $b \sim a$
$(\mathrm{iii})$ (transitive) $a \sim b$, $b \sim c$ $\Rightarrow$ $a \sim c$
Def 3
The equivalence class of $a$ under $\sim$ is
$[a] = \left\{x \in S \; | \; a \sim x \right\}$
Thm 1
Let $\sim$ be an equivalence relation on $S$. $\forall a, b \in S$,
either $[a] = [b]$ or $[a] \cap [b] = \varnothing$
Case 1 : $[a] \cap [b] = \varnothing$
Clear!
end
Case 2 : $[a] \cap [b] \neq \varnothing$
So there exists $x \in [a] \cap [b]$.
- Show 1 : $[a] \subset [b]$
Let $y \in [a]$.
So $a \sim y$ $\Rightarrow$ $y \sim a$.
Since $a \sim x$, so
$y \sim x$.
Since $b \sim x$ $\Rightarrow$ $x \sim b$, so
$y \sim b$ $\Rightarrow$ $b \sim y$ $\Rightarrow$ $y \in [b]$
$\therefore$ $[a] \subset [b]$
- Show 2 : $[b] \subset [a]$
Similarly, we can show $[b] \subset [a]$.
end
$\therefore$ $[a] = [b]$
Cor 1
Let $\sim$ be an equivalence relation on $S$. $\forall a, b \in S$,
$[a] = [b]$ $\Leftrightarrow$ $a \sim b$
( i.e. $\left\{(a, b) \in S \times S \; | \; [a] = [b] \right\} = \; \sim$ )
$\Rightarrow)$
Since $b \in [b] = [a]$, so $a \sim b$
$\Leftarrow)$
Since $a \sim b$,
$b \in [a]$.
Since $\sim$ is equivalence relation,
$b \sim b$
$\therefore$ $b \in [b]$
$\therefore$ $[a] \cap [b] \neq \varnothing$
By Thm 1,
$[a] = [b]$
Cor 2
If $\sim$ is an equivalence relation on $S$, then $S$ is a disjoint union of equivalence classes.
By Thm 1, It is sufficient to show
$\displaystyle \bigcup_{x \in S} [x] = S$
Show 1 : $S \subset \displaystyle \bigcup_{x \in S} [x]$
Let $y \in S$.
Since $y \in [y]$,
$y \in \displaystyle \bigcup_{x \in S} [x]$
$\therefore$ $S \subset \displaystyle \bigcup_{x \in S} [x]$
end
Show 2 : $\displaystyle \bigcup_{x \in S} [x] \subset S$
By defintion of $[x]$,
$[x] \subset S$
$\therefore$ $\displaystyle \bigcup_{x \in S} [x] \subset S$
end
Partition on Sets
Def 4
$S$ : set
A partition of $S$ is a collection of subsets $S_{i}$ of $S$ s.t. $S$ is a disjoint union of $S_{i}'s$.
The $S_{i}$ is called cell of the partition.
notation
For $x \in S$, the cell of $x$ is
$\overline{x} =$ the subset of the partition containing $x$
Thm 2
For the partition of $S$, $\forall a, b \in S$
$\overline{a} = \overline{b}$ $\Leftrightarrow$ $b \in \overline{a}$
( i.e. $\left\{b \in S \; | \; \overline{a} = \overline{b} \right\} = \overline{a}$ )
$\Rightarrow)$
$b \in \overline{b} = \overline{a}$
$\Leftarrow)$
Since $b \in \overline{b}$,
$\overline{a} \cap \overline{b} \neq \varnothing$
By Def 4,
$\overline{a} = \overline{b}$
Thm 3
For the partition of $S$, relation on S
$\sim \; = \left\{(a, b) \in S \times S \; | \; \overline{a} = \overline{b} \right\}$
is an equivalence relation.
Show 1 : $\forall a \in S$, $a \sim a$
Since $\overline{a} = \overline{a}$,
$a \sim a$
end
Show 2 : $a \sim b$ $\Rightarrow$ $b \sim a$
Since $\overline{a} = \overline{b}$,
$\overline{b} = \overline{a}$
$\therefore$ $b \sim a$
end
Show 3 : $a \sim b$, $b \sim c$ $\Rightarrow$ $a \sim c$
Since $\overline{a} = \overline{b}$ and $\overline{b} = \overline{c}$,
$\overline{a} = \overline{c}$
$\therefore$ $a \sim c$
end
Thm 4
$S$ : set
$\sim_{S}$ : collection of equivalence relation on $S$
$P_{S}$ : collection of pratition of $S$
$f : \; \sim_{S} \; \to P_{S}$ by $f(\sim) = \left\{[a] \; | \; a \in S \right\}$
$g : P_{S} \to \; \sim_{S}$ by $g(P) = \left\{(a, b) \in S \times S \; | \; \overline{a} = \overline{b} \right\}$
1. $g \circ f = I_{\sim_{S}}$
2. $f \circ g = I_{P_{S}}$
# $f, g$ are well-defined by Cor 2, Thm 3
pf)
$\forall \sim \; \in \; \sim_{S}$
$f(\sim) = \left\{[a] \; | \; a \in S \right\}$
$\overline{a} =$ the subset of the partition containing $a$ $=$ $[a]$
By Cor 1,
$g(f(\sim)) = \left\{(a, b) \in S \times S \; | \; \overline{a} = \overline{b} \right\} = \left\{(a, b) \in S \times S \; | \; [a] = [b] \right\} = \; \sim$
$\forall P \in P_{S}$
$g(P) = \left\{(a, b) \in S \times S \; | \; \overline{a} = \overline{b} \right\}$
By Thm 2,
$[a] = \left\{b \in S \; | \; a \; g(P) \; b \right\} = \left\{b \in S \; | \; \overline{a} = \overline{b} \right\} = \overline{a}$
$\therefore$ $f(g(P)) = \left\{[a] \; | \; a \in S \right\} = \left\{\overline{a} \; | \; a \in S \right\} = P$
Cor 3
$f, g$ is $1-1$ correspondence. So $X$ and $Y$ are equipotent.
# Thm 2