군론/Homomorphism and Factor rings

Homomorphism and Ideal

수학과 맛보기 2024. 11. 12. 00:47

 

Thm 1

Let $\phi : R \to R'$ be ring homomorphism. Then

1.  $\phi(0) = 0$

2.  $\forall a \in R$,  $\phi(-a) = -\phi(a)$

3.  $S$ is subring of $R$  $\Rightarrow$  $\phi[S]$ is subring of $R'$

4.  $S'$ is subring of $R'$  $\Rightarrow$  $\phi^{-1}[S]$ is subring of $R$

5.  $\phi(1_{R}) = 1_{\phi[R]}$

( In general, $\phi(1_{R}) \neq 1_{R'}$ )

6.  $\ker \phi = \left\{0 \right\}$  $\Leftrightarrow$  $\phi$ is 1-1

7.  $\forall a \in R$,  $\phi^{-1}[\left\{\phi(a) \right\}] = a + \ker \phi$

 

pf)

1. 2. 

# Prop 1

 

3.

더보기

  Let $S$ be a subring of $R$.

  So $S$ is subgroup of $R$.

  By Prop 1

  $\phi[S]$ is a subgroup of $R'$

 

 

  Show : closed under $\cdot$

  $\forall a', b' \in \phi[S]$ 

  So there exists $a, b \in S$  s.t.

  $a' = \phi(a)$,  $b' = \phi(b)$

  Since $S$ is ring,

  $ab \in S$

  $\therefore$  $a'b' = \phi(a)\phi(b) = \phi(ab) \in \phi[S]$

 

  end

 

4.

더보기

  Let $S'$ be a subring of $R'$.

  So $S'$ be a subring of $R'$.

  By Prop 1,

  $\phi^{-1}[S]$ is subgroup of $R$

 

 

  Show : closed under $\cdot$

  $\forall a, b \in \phi^{-1}[S]$

  So $\phi(a), \phi(b) \in S$

  Since $S$ is ring,

  $\phi(ab) = \phi(a) \phi(b) \in S$

  $\therefore$  $ab \in \phi^{-1}[S]$

 

  end

 

5.

더보기

  $\forall a' \in \phi[R]$

  So there exists $a \in R$  s.t.

  $a' = \phi(a)$

  Therefore

  $a' \phi(1_{R}) = \phi(a)\phi(1_{R}) = \phi(a 1_{R}) = \phi(a) = a'$

  $\phi(1_{R}) a' = \phi(1_{R}) \phi(a) = \phi(1_{R} a) = \phi(a) = a'$

  $\therefore$  $\phi(1_{R}) = 1_{\phi[R]}$

 

6. 7.

# Thm 1

 

 

 

Def 1

Let $R$ be a ring  and  $S$ be subring of $R$.

$S$ is an ideal of $R$ if

$aS \subset S$  and  $Sa \subset S$  for all $a \in R$

 

 

 

Cor 1

Let $R$ be a ring. Then

$\left\{0 \right\}$, $R$ are ideal of $R$

 

 

 

Def 2

Let $R$ be a ring  and  $N$ be ideal of $R$.

1.  $N = \left\{0 \right\}$ : trivial ideal

2.  $N = R$ : improper ideal

3.  $N \neq \left\{0 \right\}$ : nontrivial ideal

4.  $N \neq R$ : proper ideal

5.  $N \neq \left\{0 \right\}, R$ : nontrivial proper ideal

 

 

 

Thm 2

Let $R$ be ring with $1$  and  $N$ be ideal of $R$. Then

$u \in N$  for some unit $u$ in $R$  $\Leftrightarrow$  $N = R$

 

더보기

$\Rightarrow)$

  Since $u$ is unit in $R$, there exists $u^{-1} \in R$

  Since $N$ is ideal of $R$,

  $1 = u^{-1}u \in N$

 

  $\forall r \in R$

  Since $N$ is ideal of $R$,

  $r = r1 \in N$

  $\therefore$  $R \subset N$

  $\therefore$  $N = R$

 

$\Leftarrow)$

  Since $N = R$,

  $1 \in N$ is unit in $R$

 

 

 

Thm 3

Let $\phi : R \to R'$ be ring homomorphism. Then

$\ker \phi$ is an ideal of $R$

 

더보기

  Show 1 : $\ker \phi$ is subring of $R$

  It is clear by Thm 1.

 

  end

 

 

  Show 2 : $a \ker \phi \subset \ker \phi$  for all $a \in R$

  $\forall a \in R$,  $\forall b \in \ker \phi$

  So $\phi(b) = 0'$

 

  Therefore

  $\phi (ab) = \phi(a) \phi(b) = \phi(a) 0' = 0'$

  $\therefore$  $ab \in \ker \phi$

 

  end

 

 

  Show 3 : $\ker \phi a \subset \ker \phi$  for all $a \in R$

  We can prove similar to Show 2

 

  end

 

 

 

Thm 4

Let $\phi : R \to R'$ be ring homomorphism. Then

1.  $S$ is ideal of $R$  $\Rightarrow$  $\phi[S]$ is ideal of $\phi[R]$

2.  $S'$ is ideal of $R'$  $\Rightarrow$  $\phi^{-1}[S']$ is ideal of $R$

 

pf)

더보기

  Show 1 : $\phi[S]$ is subring of $\phi[R]$

  It is clear by Thm 1.

 

  end

 

 

  Show 2 : $a' \phi[S] \subset \phi[S]$  for all $a' \in \phi[R]$

  $\forall a' \in \phi[R]$,  $\forall b' \in \phi[S]$

  So there exists $a \in R$, $b \in S$  s.t.

$a' = \phi (a)$,  $b' = \phi(b)$

  Since $S$ is ideal of $R$,

  $ab \in S$

  $\therefore$  $a'b' = \phi(a) \phi(b) = \phi(ab) \in \phi[S]$

 

  end

 

 

  Show 3 : $\phi[S] a' \subset \phi[R]$  for all $a' \in \phi[R]$

  We can prove similar to Show 2

 

  end

 

더보기

  Show 1 : $\phi^{-1}[S']$ is subring of $R$

  It is clear by Thm 1.

 

  end

 

 

  Show 2 : $a \phi^{-1}[S'] \subset \phi^{-1}[S']$  for all $a \in R$

  $\forall a \in R$,  $\forall b \in \phi^{-1}[S']$

  So $\phi(b) \in S'$

  Since $S'$ is ideal of $R'$,

  $\phi(ab) = \phi(a) \phi(b) \in S'$

  $\therefore$  $ab \in \phi^{-1}[S']$

 

  end

 

 

  Show 3 : $\phi^{-1}[S'] a \subset \phi^{-1}[S']$  for all $a \in R$

  We can prove similar to Show 2

 

  end