수학과 맛보기 2024. 9. 9. 03:40

 

Thm 1 Cauchy-Goursat Theorem

Let $\Omega$ be an area, $R \subset \Omega$ be a rectangle  and  $f : \Omega \to \mathbb{C}$ be analytic function. Then

$\displaystyle \int_{\partial R} f(z) \; \mathrm{d}z = 0$

 

더보기

  Divide a rectangle $R$ into four equal parts by bisecting each side of $R$,

  and label these parts as $R^{1}$, $R^{2}$, $R^{3}$, and $R^{4}$.

  By the cancellation of paths,

  $\displaystyle \int_{\partial R} f(z) \; \mathrm{d}z = \sum_{i=1}^{4} \int_{\partial R^{i}} f(z) \; \mathrm{d}z$

 

  $\therefore$  $\left|\displaystyle \int_{\partial R} f(z) \; \mathrm{d}z \right| \leq \displaystyle \sum_{i=1}^{4} \left|\int_{\partial R^{i}} f(z) \; \mathrm{d}z \right|$

  At least one of the four rectangles ( let's call it $R_{1}$ ) must satisfy the following inequality.

  $\left|\displaystyle \int_{\partial R_{1}} f(z) \; \mathrm{d}z \right| \geq \dfrac{1}{4} \left|\displaystyle \int_{\partial R} f(z) \; \mathrm{d}z \right|$

 

 

  By repeating the same process on $R_{1}$, we obtain $R_{2}$ .

  If we continue this process, we obtain a rectangle $R_{1} \supset R_{2} \supset \cdots \supset R_{n} \supset \cdots$ .

  At this point, the following property is satisfied.

  1.  The rectangle $R_{n+1}$ is one of the four parts obtained by dividing rectangle $R_{n}$

       into four equal parts.

  2.  $\left|\displaystyle \int_{\partial R_{n+1}} f(z) \; \mathrm{d}z \right| \geq \dfrac{1}{4} \left|\displaystyle \int_{\partial R_{n}} f(z) \; \mathrm{d}z \right|$

 

  By nested intervals theorem,

  it converges to a point $z_{0}$ in the rectangle $R$

 

 

  Since $f$ is differentaible at $z = z_{0}$, there exists function $h(z)$  s.t.

  $f(z) = f(z_{0}) + f'(z_{0})(z - z_{0}) + h(z)(z - z_{0})$     &     $\displaystyle \lim_{z \to z_{0}} h(z) = 0$

 

  By Cor 2,

  $\dfrac{1}{4^{n}} \left|\displaystyle \int_{\partial R} f(z) \; \mathrm{d}z \right| \leq \left|\displaystyle \int_{\partial R_{n}} f(z) \; \mathrm{d}z \right| = \left| \displaystyle \int_{\partial R_{n}} (z - z_{0})h(z) \; \mathrm{d}z \right|$

 

  Let the perimeter of the rectangle $R$ be denoted by $L$,

  and the length of the diagonal of $R$ be denoted by $D$ .

  So the perimeter of $R_{n}$ is $\dfrac{L}{2^{n}}$, and the length of the diagonal of $R_{n}$ is $\dfrac{D}{2^{n}}$ .

 

  Therefore

  $\left|z - z_{0} \right| \leq \dfrac{D}{2^{n}}$     for  $z \in \partial R_{n}$

 

  Since $h(z)$ is continuous on $\partial R_{n}$  and  $\partial R_{n}$ is compact, there exists $M_{n} \geq 0$  s.t.

  $M_{n} = \displaystyle \max_{z \in \partial R_{n}} \left|h(z) \right|$

 

 

  By Thm 3,

  $\dfrac{1}{4^{n}} \left|\displaystyle \int_{\partial R} f(z) \; \mathrm{d}z \right| \leq \left| \displaystyle \int_{\partial R_{n}} (z - z_{0})h(z) \; \mathrm{d}z \right| \leq \dfrac{D}{2^{n}} M_{n} \dfrac{L}{2^{n}}$

 

  $\therefore$  $\left|\displaystyle \int_{\partial R} f(z) \; \mathrm{d}z \right| \leq DLM_{n}$

 

  Since $\displaystyle \lim_{z \to z_{0}} h(z) = 0$,

  $\displaystyle \lim_{n \to \infty} M_{n} = 0$

 

  $\therefore$  $\displaystyle \int_{\partial R} f(z) \; \mathrm{d}z = 0$

 

 

 

Thm 2

Let $D = D(z_{0}, r)$  and  $f : D \to \mathbb{C}$ be analytic function. Then

primitive function of $f$ exists

 

더보기

  $\forall z \in D$

  Let $z_{0} = x_{0} + iy_{0}$,  $z = x + iy$

  A rectangle is defined with $z_{0}$ and $z$ as its vertices.

 

  Create a curve from $z_{0}$ to $z$ along the boundary of this rectangle.

  Let the curve that first crosses a horizontal line be denoted as $\Gamma_{1}$,

  and the curve that first crosses a vertical line be denoted as $\Gamma_{2}$ .

 

  By Thm 1,

  $\displaystyle \int_{\Gamma_{1} - \Gamma_{2}} f(z) \; \mathrm{d}z = 0$

  $\therefore$  $\displaystyle \int_{\Gamma_{1}} f(z) \; \mathrm{d}z = \int_{\Gamma_{2}} f(z) \; \mathrm{d}z$

 

  By Prop 2,

  $\displaystyle \int_{\Gamma_{1}} f(z) \; \mathrm{d}z = \int_{x_{0}}^{x} f(t+iy_{0}) \; \mathrm{d}t + i\int_{y_{0}}^{y} f(x+it) \; \mathrm{d}t$

  $\displaystyle \int_{\Gamma_{2}} f(z) \; \mathrm{d}z = i\int_{y_{0}}^{y} f(x_{0}+it) \; \mathrm{d}t + \int_{x_{0}}^{x} f(t+iy) \; \mathrm{d}t$

 

  Let $\displaystyle F(z) = \int_{\Gamma_{1}} f(z) \; \mathrm{d}z = \int_{\Gamma_{2}} f(z) \; \mathrm{d}z$

  $\displaystyle \frac{\partial F}{\partial y} = \frac{\partial }{\partial y} (i \int_{y_{0}}^{y} f(x+it) \; \mathrm{d}t) = if(x + iy) = if(z)$

  $\displaystyle \frac{\partial F}{\partial x} = \frac{\partial }{\partial x} (\int_{x_{0}}^{x} f(t+iy) \; \mathrm{d}t) = f(x + iy) = f(z)$

 

  $\therefore$  $\dfrac{\partial F}{\partial x} = -i \dfrac{\partial F}{\partial y}$

 

  By Thm 2,

$f$ is continuous on $D$

  Since $f$ is continuous function and Cor 1,

  $F$ is differentiable at $z$

  $\therefore$  $F$ is differentiable on $D$  and  $F'(z) = f(z)$

  $\therefore$  $F$ is primitive function of $f$

 

 

 

Cor 1 

Let $D = D(z_{0}, r)$  and  $f : D \to \mathbb{C}$ be analytic function.

Let $\Gamma : [a, b] \to D$ be a closed curve. Then

$\displaystyle \int_{\Gamma} f(z) \; \mathrm{d}z = 0$

 

 

 

Cor 2

Let $\Omega$ be a simply connected area  and  $f : \Omega \to \mathbb{C}$ be analytic function.

Let $\Gamma : [a, b] \to \Omega$ be a closed curve. Then

$\displaystyle \int_{\Gamma} f(z) \; \mathrm{d}z = 0$

 

 

 

Prop 1

$\displaystyle \int_{0}^{\infty} e^{-it^{2}} \; \mathrm{d}t = \dfrac{1}{2} \sqrt{\dfrac{\pi}{2}} (1 - i)$

 

더보기

  Let $f(z) = e^{-z^{2}}$ . For $a >0$,

  $\Gamma_{1}(t) = t$                                $0 \leq t \leq a$
  $\Gamma_{2}(t) = a + it$                     $0 \leq t \leq a$
  $\Gamma_{3}(t) = \dfrac{1}{\sqrt{2}}(1+i)t$               $0 \leq t \leq a \sqrt{2}$

 

  By Cor 2,

  $\displaystyle \int_{\Gamma_{1}} f(z) \; \mathrm{d}z + \int_{\Gamma_{2}} f(z) \; \mathrm{d}z = \int_{\Gamma_{3}} f(z) \; \mathrm{d}z$

 

 

  Claim 1 : $\displaystyle \lim_{a \to \infty} \int_{\Gamma_{1}} f(z) \; \mathrm{d}z = \dfrac{\sqrt{\pi}}{2}$

  Since $\displaystyle \int_{\Gamma_{1}} f(z) \; \mathrm{d}z = \int_{0}^{a} e^{-t^{2}} \; \mathrm{d}t$,

  $\displaystyle \lim_{a \to \infty} \int_{\Gamma_{1}} f(z) \; \mathrm{d}z = \int_{0}^{\infty} e^{-t^{2}} \; \mathrm{d}t = \dfrac{\sqrt{\pi}}{2}$

 

  end

 

 

  Claim 2 : $\displaystyle \lim_{a \to \infty} \int_{\Gamma_{2}} f(z) \; \mathrm{d}z = 0$

  Since $\left|e^{-(a+it)^{2}} \right| = e^{-a^{2} + t^{2}} \leq e^{-a^{2} + at}$  on $\Gamma_{2}$,

  $\left|\displaystyle \int_{\Gamma_{2}} f(z) \; \mathrm{d}z \right| = \left|\displaystyle i \int_{0}^{a} e^{-(a + it)^{2}} \; \mathrm{d}t \right|$
                             $\leq e^{-a^{2}} \displaystyle \int_{0}^{a} e^{at} \; \mathrm{d}t$
                             $= \dfrac{1}{a} (1 - e^{-a^{2}})$
                             $\leq \dfrac{1}{a} $

 

  $\therefore$  $\displaystyle \lim_{a \to \infty} \left|\displaystyle \int_{\Gamma_{2}} f(z) \; \mathrm{d}z \right| = 0$

  $\therefore$  $\displaystyle \lim_{a \to \infty} \displaystyle \int_{\Gamma_{2}} f(z) \; \mathrm{d}z = 0$

 

  end

 

  Since $\displaystyle \int_{\Gamma_{3}} f(z) \; \mathrm{d}z = \dfrac{1}{\sqrt{2}} (1 + i) \int_{0}^{a \sqrt{2}} e^{-it^{2}} \; \mathrm{d}t$,

  $\displaystyle \int_{0}^{\infty} e^{-it^{2}} \; \mathrm{d}t = \dfrac{\sqrt{2}}{1 + i} \dfrac{\sqrt{\pi}}{2} = \dfrac{1}{2} \sqrt{\dfrac{\pi}{2}} (1 - i)$

 

 

 

Cor 3

$\displaystyle \int_{0}^{\infty} \cos t^{2} \; \mathrm{d}t = \int_{0}^{\infty} \sin t^{2} \; \mathrm{d}t = \dfrac{1}{2} \sqrt{\dfrac{\pi}{2}}$

 

 

 

Thm 3

Let $\Omega$ be a simply connected area  and  $f : \Omega \setminus \left\{z_{0} \right\} \to \mathbb{C}$ be analytic function.

Let $\Gamma : [a, b] \to \Omega$ be a simple closed curve.

Let $z_{0}$ be inside $\Gamma$, and choose $r$ such that the circle $\left|z - z_{0} \right| = r$ is also inside $\Gamma$. Then

$\displaystyle \int_{\Gamma} f(z) \; \mathrm{d}z = \int_{\left|z - z_{0} \right| = r} f(z) \; \mathrm{d}z$

 

더보기

  Let the curve of the circle $\left|z - z_{0} \right| = r $ be denoted as $C$ 

 

  Draw a line passing through the center $z_{0}$ of the circle,

  and let the points where this line intersects the circle be $A$ and $B$, respectively.

  Let $D$ be the point where the ray starting from $z_{0}$ in the direction of $A$ meets the curve $\Gamma$,

  and let $E$ be the point where the ray starting from $z_{0}$ in the direction of $B$ meets the curve $\Gamma$  

 

  Let the portion of the curve $\Gamma$ from $D$ to $E$ be denoted as $\Gamma_{1}$,

  and the portion from $E$ to $D$ be denoted as $\Gamma_{2}$

  Let the curve along the circle from $A$ to $B$ be denoted as $C_{1}$, and the curve from $B$ to $A$ as $C_{2}$

  Let the line segment from $A$ to $D$ be denoted as $L_{1}$, and the line segment from $B$ to $E$ as $L_{2}$

 

  Therefore

  $L_{1} + \Gamma_{1} + (-L_{2}) + (-C_{1})$,     $(-L_{1}) + (-C_{2}) + L_{2} + \Gamma_{2}$

  are closed curves and function $f(z)$ is analytic inside them.

 

 

  By Cor 2,

  $\displaystyle \int_{L_{1} + \Gamma_{1} + (-L_{2}) + (-C_{1})} f(z) \; \mathrm{d}z = 0$

  $\displaystyle \int_{(-L_{1}) + (-C_{2}) + L_{2} + \Gamma_{2}} f(z) \; \mathrm{d}z = 0$

 

  By Prop 3,

  $0 = \displaystyle \int_{L_{1} + \Gamma_{1} + (-L_{2}) + (-C_{1})} f + \displaystyle \int_{(-L_{1}) + (-C_{2}) + L_{2} + \Gamma_{2}} f$
     $= \displaystyle \int_{L_{1}} f + \int_{\Gamma_{1}} f - \int_{L_{2}} f - \int_{C_{1}} f - \int_{L_{1}} f - \int_{C_{2}} f + \int_{L_{2}} f + \int_{\Gamma_{2}} f$

     $= \displaystyle \int_{\Gamma_{1} + \Gamma_{2}} f - \int_{C_{1} + C_{2}} f $
     $= \displaystyle \int_{\Gamma} f - \int_{C} f $

 

  $\therefore$  $\displaystyle \int_{\Gamma} f(z) \; \mathrm{d}z = \int_{\left|z - z_{0} \right| = r} f(z) \; \mathrm{d}z$

 

 

 

Cor 4

Let $\Omega$ be an area  and  $f : \Omega \setminus \left\{z_{0} \right\} \to \mathbb{C}$ be analytic function.

Then for $\overline{D(z_{0}, r)} \subset \Omega$,

$\displaystyle \int_{\left|z -z_{0} \right| = r} f(z) \; \mathrm{d}z = \int_{\left|z - z_{0} \right| = \varepsilon} f(z) \; \mathrm{d}z$

( $\varepsilon \in (0, r)$ )

 

더보기

  Since $\overline{D(z_{0}, r)} \subset \Omega$  and  $\Omega$ is open, there exists $R > r$  s.t.

  $D(z_{0}, R) \subset \Omega$

 

  Since $D(z_{0}, R)$ is simply connected area, by Thm 3

  $\displaystyle \int_{\left|z -z_{0} \right| = r} f(z) \; \mathrm{d}z = \int_{\left|z - z_{0} \right| = \varepsilon} f(z) \; \mathrm{d}z$