The Fundamental Theorem of Calculus
Def 1
Let $\Omega$ be an area and $F : \Omega \to \mathbb{C}$ be differentiable on $\Omega$
If $F' = f$, $F$ is called primitive function of $f$
Thm 1
Let $\Omega$ be an area and $f : \Omega \to \mathbb{C}$ be continuous on $\Omega$
Let $F$ be a primitive function of $f$ and $\Gamma : [a, b] \to \Omega$ be a curve. Then
$\displaystyle \int_{\Gamma} f(z) \; \mathrm{d}z = F(\Gamma (b)) - F(\Gamma (a))$
Since $\dfrac{\mathrm{d} }{\mathrm{d} t} F(\Gamma (t)) = F'(\Gamma(t)) \Gamma'(t)$,
$\displaystyle \int_{\Gamma} f \; \mathrm{d}z = \int_{\Gamma} F' \; \mathrm{d}z$
$= \displaystyle \int_{a}^{b} F'(\Gamma(t)) \Gamma'(t) \; \mathrm{d}t$
$= \displaystyle \int_{a}^{b} \frac{\mathrm{d} }{\mathrm{d} t} F(\Gamma (t)) \; \mathrm{d}t$
$= F(\Gamma(b)) - F(\Gamma(a)) $
Def 2
Let $\Gamma : [a,b] \to \mathbb{C}$ be a curve such that $\Gamma(a) = \Gamma(b)$ .
$\Gamma$ is called closed curve. If $\Gamma$ is 1-1 on $[a, b)$, it is called simple closed curve.
# When performing a line integral along a simple closed curve, the curve is assumed to be oriented counterclockwise.
Cor 1
Let $\Gamma$ be a closed curve. Suppose the primitive of $f$ exists. Then
$\displaystyle \int_{\Gamma} f(z) \; \mathrm{d}z = 0$
Cor 2
Let $\Gamma$ be a closed curve. Then
$\displaystyle \int_{\Gamma} z^{n} \; \mathrm{d}z = 0$ ( $n \in \mathbb{Z} \setminus \left\{-1 \right\}$ )
Cor 3
Let $\Gamma$ be a closed curve and $f(z)$ be power series. Then
$\displaystyle \int_{\Gamma} f(z) \; \mathrm{d}z = 0$
Thm 2
Let $z_{0} \in \mathbb{C}$ . For $r \in \mathbb{R}$, $C_{r}$ : $\left|z - z_{0} \right| = r $ . Then
$\displaystyle \int_{C_{r}} \dfrac{1}{z - z_{0}} \; \mathrm{d}z = 2 \pi i$
Let $C_{r}(t) = e^{it} + z_{0}$ ( $0 \leq t \leq 2\pi$ )
$\displaystyle \int_{C_{r}} \dfrac{1}{z - z_{0}} \; \mathrm{d}z = \int_{0}^{2\pi} \dfrac{1}{e^{it}} i e^{it} \; \mathrm{d}t = 2 \pi i$
Def 3
Let $\Gamma : [a, b] \to \mathbb{C}$ be a curve and $\Gamma(t) = x(t) + i y(t)$ .
The length of the curve is defined as follows.
$\displaystyle \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2}} \; \mathrm{d}t = \int_{a}^{b} \left|x'(t) + iy'(t) \right| \; \mathrm{d}t = \int_{a}^{b} \left|\Gamma'(t) \right| \; \mathrm{d}t = \int_{\Gamma} \left|\mathrm{d}z \right| $
( We write $\left|\mathrm{d}z \right| = \left|\Gamma'(t) \right| \mathrm{d}t$ )
Thm 3
Let $\Omega$ be an area, $\Gamma : [a, b] \to \Omega$ and $f : \Omega \to \mathbb{C}$
Suppose length of $\Gamma$ is $L$ and $\left|f(z) \right| \leq M$ on $\Gamma$ . Then
$\displaystyle \left|\int_{\Gamma} f(z) \; \mathrm{d}z \right| \leq \int_{\Gamma} \left|f(z) \right| \left|\mathrm{d}z \right| \leq ML$
$\displaystyle \left|\int_{\Gamma} f(z) \; \mathrm{d}z \right| = \left|\int_{a}^{b} f(\Gamma(t)) \Gamma'(t) \; \mathrm{d}t \right|$
$\leq \displaystyle \int_{a}^{b} \left|f(\Gamma(t)) \right| \left|\Gamma'(t) \right| \; \mathrm{d}t$
$= \displaystyle \int_{\Gamma} \left|f(z) \right| \left|\mathrm{d}z \right|$
$\leq \displaystyle M \int_{\Gamma} \left|\mathrm{d}z \right|$
$= ML$