character of f
Thm 1
Let $\Omega$ be an area and $f : \Omega \to \mathbb{C}$ .
$f'(z) = 0$ on $\Omega$
$\Rightarrow$ $f$ is a constant function.
Let $f(z) = u(x, y) + iv(x, y)$
Since $f'(z) = \dfrac{\partial f}{\partial x} = -i \dfrac{\partial f}{\partial y} =0$,
$\dfrac{\partial u}{\partial x} = 0$, $\dfrac{\partial u}{\partial y} = 0$
$\dfrac{\partial v}{\partial x} = 0$, $\dfrac{\partial v}{\partial y} = 0$
$\therefore$ $f$ is constant function
Thm 2
Let $\Omega$ be an area and $f : \Omega \to \mathbb{C}$ .
Let $f$ be an analytic function and $c \in \mathbb{R}$
$\left|f(z) \right| = c$ on $\Omega$
$\Rightarrow$ $f(z)$ is a constant function.
Let $f(z) = u(x, y) + iv(x, y)$
Since $\left|f \right| = \left|u + iv \right| = c$,
$u^{2} + v^{2} = c^{2}$
Through the partial differentiation with respect to x and y, we can get
$u \cdot \dfrac{\partial u}{\partial x} + v \cdot \dfrac{\partial v}{\partial x} = 0$
$u \cdot \dfrac{\partial u}{\partial y} + v \cdot \dfrac{\partial v}{\partial y} = 0$
By Cor 1 and Thm 2,
C-R equation of $f$ is satisfied at all points.
Therefore
$u \cdot \dfrac{\partial u}{\partial x} - v \cdot \dfrac{\partial u}{\partial y} = 0$
$u \cdot \dfrac{\partial u}{\partial y} + v \cdot \dfrac{\partial u}{\partial x} = 0$
If you solve the above system of equations,
$\dfrac{\partial u}{\partial x} = 0$, $\dfrac{\partial u}{\partial y} = 0$
$\therefore$ $u$ is a constant function
Similarly, we can show $v$ is a constant function.
$\therefore$ $f$ is a constant function.
Thm 3
Let $\Omega$ be an area and $f : \Omega \to \mathbb{C}$ .
Let $f$ be an analytic function and $l$ be a curve.
$f(z) \in l$ on $\Omega$
$\Rightarrow$ $f$ is a constant function.
By 이중적분의 변수변환,
$\displaystyle \iint_{f(\Omega)} \; \mathrm{d}A = \iint_{\Omega} \left| \frac{\partial (u,v)}{\partial (x, y)} \right| \; \mathrm{d}x \mathrm{d}y$
By defenition,
$\left| \dfrac{\partial (u,v)}{\partial (x, y)} \right| = \left|\det \begin{pmatrix}
\dfrac{\partial u}{\partial x} & \dfrac{\partial u}{\partial y} \\
\dfrac{\partial v}{\partial x} & \dfrac{\partial v}{\partial y} \\
\end{pmatrix} \right| = \left| \dfrac{\partial u}{\partial x} \dfrac{\partial v}{\partial y} - \dfrac{\partial u}{\partial y}\dfrac{\partial v}{\partial x} \right|$
By Cor 1 and Thm 2,
C-R equation of $f$ is satisfied at all points.
Therefore
$\left| \dfrac{\partial (u,v)}{\partial (x, y)} \right| = (\dfrac{\partial u}{\partial x})^{2} + (\dfrac{\partial v}{\partial x})^{2} = (\dfrac{\partial u}{\partial y})^{2} + (\dfrac{\partial v}{\partial y})^{2}$
Since $\displaystyle \iint_{f(\Omega)} \; \mathrm{d}A = 0$ and $(\dfrac{\partial u}{\partial x})^{2} + (\dfrac{\partial v}{\partial x})^{2} \geq 0$,
$(\dfrac{\partial u}{\partial x})^{2} + (\dfrac{\partial v}{\partial x})^{2} = 0$
$\therefore$ $\dfrac{\partial u}{\partial x} = 0$, $\dfrac{\partial v}{\partial x} = 0$
Similarly, we can get
$\dfrac{\partial u}{\partial y} = 0$, $\dfrac{\partial v}{\partial y} = 0$
$\therefore$ $f$ is a constant function.
Thm 4
Let $\Omega$ be an area and $f : \Omega \to \mathbb{C}$ be an analytic function.
Define $\phi : \mathbb{C} \to \mathbb{R}^{2}$ by
$\phi(a + ib) = \begin{pmatrix}
a \\
b \end{pmatrix}$
$\Rightarrow$ For $\alpha \in \mathbb{C}$, $\phi( f' \times \alpha ) = D(\phi \circ f \circ \phi^{-1}) \times \phi(\alpha)$
By Cor 1,
$f' = \dfrac{\partial u}{\partial x} + i\dfrac{\partial v}{\partial x}$
By Cor 1 and Thm 2,
C-R equation of $f$ is satisfied at all points.
Let $\alpha = h + ik$
$f' \times \alpha = (\dfrac{\partial u}{\partial x} + i\dfrac{\partial v}{\partial x}) (h+ik) $
$= (\dfrac{\partial u}{\partial x}h - \dfrac{\partial v}{\partial x}k) + i (\dfrac{\partial v}{\partial x}h + \dfrac{\partial u}{\partial x}k)$
$= (\dfrac{\partial u}{\partial x}h + \dfrac{\partial u}{\partial y}k) + i (\dfrac{\partial v}{\partial x}h + \dfrac{\partial v}{\partial y}k)$
Therefore
$\phi(f' \times \alpha) = \begin{pmatrix}
\dfrac{\partial u}{\partial x}h + \dfrac{\partial u}{\partial y}k \\
\dfrac{\partial v}{\partial x}h + \dfrac{\partial v}{\partial y}k \end{pmatrix} = \begin{pmatrix}
\dfrac{\partial u}{\partial x} & \dfrac{\partial u}{\partial y} \\
\dfrac{\partial v}{\partial x} & \dfrac{\partial v}{\partial y} \\
\end{pmatrix} \begin{pmatrix}
h \\
k \end{pmatrix}$
$\therefore$ $\phi( f' \times \alpha ) = D(\phi \circ f \circ \phi^{-1}) \times \phi(\alpha)$