Interior, Boundary, and Exterior
Def 1
Let $(X, \mathscr{T})$ be a topological space and $A \subseteq X$.
1. $x$ is called interior point of $A$
$\Leftrightarrow$ $\exists U \in \mathscr{T}$ s.t. $x \in U \subseteq A$
2. The set of all interior point of $A$ is called interior of $A$.
We write $A^{\circ}$ or $\mathrm{Int}(A)$
3. $x \in X$ is called boundary point of $A$
$\Leftrightarrow$ $x \in \overline{A} \cap \overline{(X \setminus A)}$
4. The set of all boundary point of $A$ is called boundary of $A$ (or frontier of $A$).
We write $\mathrm{Fr}(A)$
5. $\mathrm{Int}(X \setminus A)$ is called exterior of $A$.
We write $\mathrm{Ext}(A)$
Thm 1
Let $(X, \mathscr{T})$ be a topological space and $A \subseteq X$.
$\displaystyle \bigcup_{\begin{gather*} U \subseteq A \\ U : \text{open set} \end{gather*}} U = \mathrm{Int}(A)$
$x \in \displaystyle \bigcup_{\begin{gather*} U \subseteq A \\ U : \text{open set} \end{gather*}} U$ $\Leftrightarrow$ $\exists U \in \mathscr{T}$ s.t. $x \in U \subseteq A$ $\Leftrightarrow$ $x \in \mathrm{Int}(A)$
Thm 2
Let $(X, \mathscr{T})$ be a topological space and $A \subseteq X$.
$A$ is an open set $\Leftrightarrow$ $\mathrm{Int}(A) = A$
pf)
$\Rightarrow)$
Since $A$ is open set,
$A \subseteq \displaystyle \bigcup_{\begin{gather*} U \subseteq A \\ U : \text{open set} \end{gather*}} U = \mathrm{Int}(A) \subseteq A$
$\Leftarrow)$
$A = \mathrm{Int}(A) = \displaystyle \bigcup_{\begin{gather*} U \subseteq A \\ U : \text{open set} \end{gather*}} U \in \mathscr{T}$
Thm 3
Let $(X, \mathscr{T})$ be a topological space and $A \subseteq X$.
$x \in \mathrm{Fr}(A)$ $\Leftrightarrow$ $\forall U \in \mathscr{T}$ containing $x$, $U \cap A \neq \varnothing$ and $U \cap (X \setminus A) \neq \varnothing$
$x \in \mathrm{Fr}(A)$ $\Leftrightarrow$ $x \in \overline{A} \cap \overline{(X \setminus A)}$
$\Leftrightarrow$ $x \in \overline{A}$ and $x \in \overline{(X \setminus A)}$
$\Leftrightarrow$ $\forall U \in \mathscr{T}$ containing $x$, $U \cap A \neq \varnothing$ and $U \cap (X \setminus A) \neq \varnothing$
Thm 4
$X$ : topological space, $A \subseteq X$
$X = \mathrm{Int}(A) \sqcup \mathrm{Ext}(A) \sqcup \mathrm{Fr}(A)$
($\sqcup$ is disjoint union.)
Show 1 : $\mathrm{Int}(A) \cap \mathrm{Ext}(A) = \varnothing$
Since $\mathrm{Int}(A) \subseteq A$ and $\mathrm{Ext}(A) \subseteq X \setminus A$,
$\mathrm{Int}(A) \cap \mathrm{Ext}(A) = \varnothing$
end
Show 2 : $x \notin \mathrm{Int}(A)$ and $x \notin \mathrm{Ext}(A)$ $\Leftrightarrow$ $x \in \mathrm{Fr}(A)$
$x \notin \mathrm{Int}(A)$ and $x \notin \mathrm{Ext}(A)$
$\Leftrightarrow$ $\forall U \in \mathscr{T}$ containing $x$, $U \nsubseteq A$ and $U \nsubseteq X \setminus A$
$\Leftrightarrow$ $\forall U \in \mathscr{T}$ containing $x$, $U \cap (X \setminus A) \neq \varnothing$ and $U \cap A \neq \varnothing$
$\Leftrightarrow$ $x \in \mathrm{Fr}(A)$
end