Base
Def 1
$(X, \mathscr{T})$ : topological space
A family $\mathscr{B}$ of open sets of $X$ ( i.e. $\mathscr{B} \subseteq \mathscr{T}$ ) is a base for $\mathscr{T}$ if
every open set in $X$ is a union of sets in $\mathscr{B}$.
Thm 1
Let $(X, \mathscr{T})$ be a topological space and $\mathscr{C} \subseteq \mathscr{T}$ .
T.F.A.E.
(1) $\mathscr{C}$ is base for $\mathscr{T}$
(2) $\forall p \in X$ and for every open set $U$ containing $p$, $\exists O \in \mathscr{C}$ s.t.
$p \in O \subseteq U$
pf)
(1) $\Rightarrow$ (2)
$\forall p \in X$
Let $U$ be an open set containing $p$
Since $\mathscr{C}$ is a base of $\mathscr{T}$, there exists $O_{\alpha} \in \mathscr{C}$ for $\alpha \in I$ s.t.
$\displaystyle U = \bigcup_{\alpha \in I} O_{\alpha}$
Since $p \in U$, there exists $\alpha_{0} \in I$ s.t.
$\displaystyle p \in O_{\alpha_{0}} \in \mathscr{C}$
Since $U = \displaystyle \bigcup_{\alpha \in I} O_{\alpha} $,
$O_{\alpha_{0}} \subseteq U$
(2) $\Rightarrow$ (1)
Let $U$ be an open set.
$\forall x \in U \subseteq X$
By assumption (2), there exists $O_{x} \in \mathscr{C}$ s.t.
$x \in O_{x} \subseteq U$
Therefore
$U = \displaystyle \bigcup_{x \in U} \left\{x \right\} \subseteq \bigcup_{x \in U} O_{x} \subseteq U$
$\therefore$ $U = \displaystyle \bigcup_{x \in U} O_{x}$
$\therefore$ $\mathscr{C}$ is base for $\mathscr{T}$
Thm 2
$X$ : set
A family $\mathscr{B}$ of subset of a set $X$ is a base for some topology of $X$ iff the following conditions holds.
$(\mathrm{i})$ The union of the members of $\mathscr{B}$ is $X$.
$(\mathrm{ii})$ For any $B_{1}, B_{2}$ in $\mathscr{B}$ and $x \in B_{1} \cap B_{2}$, $\exists B_{x} \in \mathscr{B}$ s.t.
$x \in B_{x} \subseteq B_{1} \cap B_{2}$
# So we can define topology from base
pf)
$\Rightarrow)$
Suppose $\mathscr{B}$ is a base for a topology $\mathscr{T}$ for $X$.
Show 1 : $(\mathrm{i})$
Since $X$ is open set, there exists $B_{\alpha} \in \mathscr{B}$ for $\alpha \in I$ s.t.
$X = \displaystyle \bigcup_{\alpha \in I} B_{\alpha}$
Therefore
$X = \displaystyle \bigcup_{\alpha \in I} B_{\alpha} \subseteq \bigcup_{B_{\alpha} \in \mathscr{B}} B_{\alpha} \subseteq X$
$\therefore$ $\displaystyle \bigcup_{B_{\alpha} \in \mathscr{B}} B_{\alpha} = X$
end
Show 2 : $(\mathrm{ii})$
Let $B_{1}, B_{2} \in \mathscr{B} \subseteq \mathscr{T}$
$\forall x \in B_{1} \cap B_{2}$
Since $B_{1} \cap B_{2}$ is open set, by Thm 1 there exists $B_{x} \in \mathscr{B}$ s.t.
$x \in B_{x} \subseteq B_{1} \cap B_{2}$
end
$\Leftarrow)$
Let $\mathscr{B} = \left\{B_{\alpha} \; | \; \alpha \in J \right\}$.
We define
$\mathscr{T} =$ the collections of all unions of element of $\mathscr{B}$
$= \left\{\displaystyle \bigcup_{\alpha \in D} B_{\alpha} \; | \; D \subseteq J \right\}$
Show 1 : $\varnothing \in \mathscr{T}$, $X \in \mathscr{T}$
$\varnothing = \displaystyle \bigcup_{\alpha \in \varnothing} B_{\alpha} \in \mathscr{T}$
By assumption $(\mathrm{i})$,
$X = \displaystyle \bigcup_{\alpha \in J} B_{\alpha} \in \mathscr{T}$
end
Show 2 : $U_{\alpha} \in \mathscr{T}$ for $\alpha \in I$ $\Rightarrow$ $\displaystyle \bigcup_{\alpha \in I} B_{\alpha} \in \mathscr{T}$
It is clear by definition of $\mathscr{T}$.
end
Show 3 : $U_{1}, U_{2} \in \mathscr{T}$ $\Rightarrow$ $U_{1} \cap U_{2} \in \mathscr{T}$
By definition of $\mathscr{T}$, there exists $D_{1}, D_{2} \subseteq J$ s.t.
$U_{1} = \displaystyle \bigcup_{\alpha \in D_{1}} B_{\alpha}$
$U_{2} = \displaystyle \bigcup_{\alpha \in D_{2}} B_{\alpha}$
$\forall x \in U_{1} \cap U_{2}$, there exists $\alpha_{1} \in D_{1}$ and $\alpha_{2} \in D_{2}$ s.t.
$x \in B_{\alpha_{1}} \cap B_{\alpha_{2}}$
Since $B_{\alpha_{1}}, B_{\alpha_{2}} \in \mathscr{B}$, by assumption $(\mathrm{ii})$ there exists $B_{\alpha_{x}} \in \mathscr{B}$ s.t.
$x \in B_{\alpha_{x}} \subseteq B_{\alpha_{1}} \cap B_{\alpha_{2}}$
Since $B_{\alpha_{1}} \cap B_{\alpha_{2}} \subseteq U_{1} \cap U_{2}$,
$U_{1} \cap U_{2} = \displaystyle \bigcup_{x \in U_{1} \cap U_{2}} \left\{x \right\} \subseteq \bigcup_{x \in U_{1} \cap U_{2}} B_{\alpha_{x}} \subseteq U_{1} \cap U_{2}$
$\therefore$ $U_{1} \cap U_{2} = \displaystyle \bigcup_{x \in U_{1} \cap U_{2}} B_{\alpha_{x}} \in \mathscr{T}$
end
$\therefore$ $\mathscr{T}$ is a topology on $X$
Ex 1
$X = \mathbb{R}$
$\mathscr{B} = \left\{[a, b) \; | a < b \right\}$
$\Rightarrow$ $\mathscr{B}$ is a base for some topology for $\mathbb{R}$.
Def 2
Topology of Ex 1 is called lower limit topology.
We write $(\mathbb{R}, \text{lower limit topology}) = \mathbb{R}_{l}$.
Def 3
Let $\mathscr{T}_{1}, \mathscr{T}_{2}$ be two topology of $X$.
If $\mathscr{T}_{1} \subseteq \mathscr{T}_{2}$, then $\mathscr{T}_{1}$ is weaker (or coarser) than $\mathscr{T}_{2}$.
( $\mathscr{T}_{2}$ is stronger (or finer) than $\mathscr{T}_{1}$ )
Prop 1
For $\mathbb{R}$,
$\text{usual topology} \subsetneqq \text{lower limit topology}$
Let $\mathscr{T}_{usual}$ be usual topology and $\mathscr{T}_{lower}$ be lower limit topology.
Let $\mathscr{B}$ is base of $\mathscr{T}_{usual}$
Show 1 : $\mathscr{T}_{usual} \subseteq \mathscr{T}_{lower}$
It is sufficient to show $\mathscr{B} \subseteq \mathscr{T}_{lower}$
For $(a, b) \in \mathscr{B}$,
$(a, b) = \displaystyle \bigcup_{n \in \mathbb{N}} [a + \frac{1}{n}, b) \in \mathscr{T}_{lower}$
end
Show 2 : $\mathscr{T}_{usual} \neq \mathscr{T}_{lower}$
We prove from $[0, 1) \notin \mathscr{T}_{usual}$
Let $U = [0, 1)$.
For $0 \in U$, there doesn't exist $B \in \mathscr{B}$ s.t.
$0 \in B \subseteq [0, 1)$
By Thm 1,
$U \notin \mathscr{T}_{usual} $
end
Def 4
If $(X, \mathscr{T})$ has a countable base, then we call $(X, \mathscr{T})$ is a 2-nd countable space.
Thm 3
$(\mathbb{R}, \text{usual topology})$ is a 2-nd countable space.
Let $\mathscr{B} = \left\{(a, b) \; | \; a < b , \; a, b \in \mathbb{Q} \right\}$
It is clearly subset of usual topology.
$\forall a, b \in \mathbb{R}$, there exists $a_{n}, b_{n} \in \mathbb{Q}$ s.t.
$\displaystyle \lim_{n \to \infty} a_{n} = a$, $\displaystyle \lim_{n \to \infty} b_{n} = b$, $a < a_{n} < b_{n} < b$
$\therefore$ $(a, b) = \displaystyle \bigcup_{n \in \mathbb{N}} (a_{n}, b_{n})$
$\therefore$ Every open set of $\mathbb{R}$ is a union of sets in $\mathscr{B}$.
$\therefore$ $(\mathbb{R}, \text{usual topology})$ is a 2-nd countable space.