Diophantine approximation
Thought
$x^{2} - Dy^{2} = 1$ for some $x, y \in \mathbb{N}$
$\Rightarrow$ $(x+y\sqrt{D})(x-y\sqrt{D}) = 1$
$\Rightarrow$ $x-y\sqrt{D} = \frac{1}{x+y\sqrt{D}} \leq \frac{1}{y}$
$\Rightarrow$ $\left|\frac{x}{y} - \sqrt{D} \right| \leq \frac{1}{y^{2}}$
정리1 Dirichlet's Diophantine approximation theorem
Let $\alpha$ be an irrational number.
Then there exists infinitely many intergers $x$ and $y$ $(y>0)$ s.t.
$\left| x - y \alpha \right| < \frac{1}{y}$ $( \Leftrightarrow \left|\frac{x}{y} - \alpha \right| < \frac{1}{y^{2}})$
pf)
It suffices to show that for give positive interger $N$, there exists intergers $x$ and $y$ s.t.
$\left| x - y \alpha \right| < \frac{1}{N}$ and $0< y \leq N$
Notation
For a real number $A$, $\left \lfloor A \right \rfloor = $ largest interger $ \leq A$ $\left\{A \right\} = A - \left \lfloor A \right \rfloor$ (i.e. $0 \leq \left\{A \right\} < 1$) |
For $k = 0, 1, 2, \cdots , N$, let
$n_{k} = \left \lfloor k \alpha \right \rfloor$
$f_{k} = \left\{k\alpha \right\} = k\alpha - n_{k}$
There are $N+1$ $f_{k}'s$ and $N$ subintervals at the same length on $[0,1)$.
(i.e. $[0, \frac{1}{N}), \; [\frac{1}{N}, \frac{2}{N}), \; \cdots, \; [\frac{N-1}{N}, 1)$)
By pigeon hole principle, there exists $f_{i}, f_{j} \in [ \frac{k}{N}, \frac{k+1}{N})$ for some $i, j$ $(i>j)$ and $k$ s.t.
$\left|f_{j} - f_{i} \right| < \frac{1}{N}$
So $\left|(j\alpha - n_{j}) - (i\alpha -n_{i}) \right| < \frac{1}{N}$
$\Rightarrow$ $\left|(n_{i} - n_{j}) - (i-j)\alpha \right| < \frac{1}{N}$
Take $x = n_{i} - n_{j} \in \mathbb{Z}$ and $y = i - j \in \mathbb{N}$.
Since $0 \leq j < i \leq N$, so $0 < y \leq N$.
$\therefore$ For give positive interger $N$, there exists intergers $x$ and $y$ s.t. $\left| x - y \alpha \right| < \frac{1}{N}$ and $0< y \leq N$