정수론/Prime numbers
Mersenne Primes
수학과 맛보기
2023. 12. 23. 13:54
정의1
1. A number of the form $2^{n} - 1$ is called a Mersenne number.
2. A Mersenne Number is called a Mersenne prime if it is a prime.
정리1
Let $a \geq 2$, $n \geq 2$ and $a^{n} - 1$ is a prime.
$\Rightarrow$ $a=2$, $n$ is a prime.
더보기
Since $a^{n} - 1$ is a prime and $ a^{n} - 1 = (a-1)(a^{n-1} + a^{n-2} + \cdots + 1)$,
so $a-1 = 1$ $\Rightarrow$ $a = 2$
Suppose 1 : $n = mk$ $(1 < m, k < n)$
$ 2^{n} - 1 = 2^{mk} - 1 = (2^{m})^{k} - 1 = (2^{m}-1)(( 2^{m} )^{n-1} + ( 2^{m} )^{n-2} + \cdots + 1)$
It is not a prime
Contradiction
$\therefore$ $n$ is a prime.