정리1 Linear congruence theorem
Let $a, c, m \in \mathbb{Z}$, $m \geq 1$, $g = gcd(a,m)$
1. $g \!\!\! \not | c$
$\Rightarrow$ $ax \equiv c \; (\mathrm{mod} \; m)$ has no solution
2. $g|c$
$\Rightarrow$ $ax \equiv c \; (\mathrm{mod} \; m)$ has $g$ solutions modulo $m$
: If $x_{0}$ is a solution ( i.e. $ax_{0} \equiv c \; (\mathrm{mod} \; m)$),
then $x_{0} + \frac{m}{g}k \;\;\; (k=0,1,2, \cdots, g-1)$ are incongruent solutions modulo $m$
pf)
Suppose 1 :$ax_{0} \equiv c \; (\mathrm{mod} \; m)$
Then $ax_{0} - km = c$ for some $k \in \mathbb{Z}$
From the Euclidean algorithm,
$ax_{0} - km = c$ has solution $x_{0}$ (and $k$)
iff (if and only if) $g=gcd(a,m)|c$
Contradiction
From the above observation, if $g|c$,
then $ax \equiv c \; (\mathrm{mod} \; m)$ has a solution $x_{0}$.
We need to show that $ax \equiv c \; (\mathrm{mod} \; m)$ has $g$ solutions.
Suppose 1 : $x_{1}$ is another solution.
Then $ax_{0} \equiv c \equiv ax_{1} \; (\mathrm{mod} \; m)$
$\Rightarrow$ $ax_{0} \equiv ax_{1} \; (\mathrm{mod} \; m)$
Recall that $g = gcd(a,m)$
$\frac{a}{g}x_{0} \equiv \frac{a}{g}x_{1} \; (\mathrm{mod} \; \frac{m}{g})$
Since $gcd( \frac{a}{g}, \frac{m}{g}) = 1$, so
$x_{0} \equiv x_{1} \; (\mathrm{mod} \; \frac{m}{g})$
$\therefore$ $x_{1} \equiv x_{0}, \; x_{0} + \frac{m}{g}, \; x_{0} + 2\frac{m}{g}, \; \cdots, \; x_{0} + (g-1)\frac{m}{g}$
$\therefore$ $ax \equiv c \; (\mathrm{mod} \; m)$ has $g$ solutions.
'정수론 > Congruences' 카테고리의 다른 글
Euler's phi function and the Chinese remainder theorem (0) | 2023.12.22 |
---|---|
Euler's formula (0) | 2023.12.22 |
Fermat's little theorem (0) | 2023.12.22 |
$ax \equiv b \; (\mathrm{mod} \; p)$ (0) | 2023.12.22 |
Congruences (0) | 2023.12.22 |