정리1
Let $p$ be a prime and $a \not \equiv 0 \; (\mathrm{mod} \; p)$.
Then $ax \equiv b \; (\mathrm{mod} \; p)$ has a unique solution modulo $p$
Show 1 : $ax \equiv b \; (\mathrm{mod} \; p)$ has a solution
Since $gcd(a,p)=1$, by Euclidean algorithm there exists $x_{0}, y_{0} \in \mathbb{Z}$ s.t. $ax_{0} + py_{0} =1$
Then $ax_{0} \equiv 1 \; (\mathrm{mod} \; p)$
$\Rightarrow$ $a(bx_{0}) \equiv b \; (\mathrm{mod} \; p)$
Show 2 : $bx_{0}$ is a unique solution modulo $p$
Suppose $ax_{1} \equiv b \; (\mathrm{mod} \; p)$ and $ax_{2} \equiv b \; (\mathrm{mod} \; p)$
$\Rightarrow$ $ax_{1} \equiv ax_{2} \; (\mathrm{mod} \; p)$
Since $gcd(a,p)=1$,
so $x_{1} \equiv x_{2} \; (\mathrm{mod} \; p)$
$\therefore$ There's only one solution $x \equiv bx_{0} \; (\mathrm{mod} \; p)$
'정수론 > Congruences' 카테고리의 다른 글
Euler's phi function and the Chinese remainder theorem (0) | 2023.12.22 |
---|---|
Euler's formula (0) | 2023.12.22 |
Fermat's little theorem (0) | 2023.12.22 |
Linear congruence theorem (0) | 2023.12.22 |
Congruences (0) | 2023.12.22 |